

Journal of Multi Disciplinary Engineering Technologies, Vol. 14, Issue 2

198

Serialization/Deserialization and Search using

Protocol Buffer and Bloom Filter for High

Performance Systems
Rajesh Kumar

1,#
, Bhavneesh Tyagi

2

1
Architect – Ericsson R&D, Gurgaon

2
R&D Manager – Ericsson R&D Gurgaon

#Corresponding author, Email: choudhary.rajesh123@gmail.com

Abstract – Serialization is the process of converting in

memory data structure into a stream of bytes so that it can

be stored or transferred where Deserialization is the process

of converting the stream of bytes to in memory data

structure. Serialization and Deserialization are the basic

building blocks for the communication between two entities

or designing any key value store. Bloom Filter is a

probability-based data structure which is used to determine

the existence of an element inside a set of elements. This

paper will focus on using Protocol Buffer for

serialization/deserialization of data and Bloom Filter for

search in performance intensive application like key value

store.

Keywords— Protocol Buffer, Bloom Filter, Distributed

systems, Serialization and Deserialization.

1. INTRODUCTION

This paper is proposing the impact of existing

serialization/deserialization techniques on standalone

as well as distributed systems so that they can cater

to demanding performance requirement.

In today’s rapidly changing world, performance is

the key to ever growing demand of customers as well

as vendors like IoT, distributed systems or any

standalone application where performance plays a

vital role.

If we carefully choose our serialization technique

while designing any application, then it will have

positive impact on various performance aspects of

any application. Some of the aspects are mentioned

below

 Storing Data into Databases or on Hard

Drives: a method which involves converting

program objects into byte streams and then

storing them into DBs, such as in Java JDBC.

 Transferring Data through the Wires: – for

instance, web applications and mobile apps

passing on objects from client to server and the

reverse.

 Detecting Changes in Time-Varying Data: –

abrupt variations in time series data can

represent transitions that occur between states,

which is useful for modelling and predicting

time series and is found in a variety of

application areas. Remote Procedure Call

(RPC): It is a protocol, which one program can

use to request a service from a program found

on another computer on a network without

needing to know that network’s details. A

remote procedure call is also referred to as a

function call or a subroutine call.

 Persisting Data onto Files: This occurs mainly

in language-neutral formats like XML or CSV.

Most languages, however, allow the direct

serialization of objects into binary using APIs

such as the Serializable interface in Java or

fstreamclass in C++.

 Remote Method Invocation (RMI): The

serialized objects are passed as parameters to

functions on a remote machine as if they have

been invoked on a local one.

 Distributing Objects: A Distributed Object

Model. This method is used for instances when

programs running on different platforms

written in dissimilar languages have to transfer

object data over a distributed network using a

framework like Common Object Request

Broker Architecture (CORBA).

mailto:choudhary.rajesh123@gmail.com

Journal of Multi Disciplinary Engineering Technologies, Vol. 14, Issue 2

199

In addition to serialization and deserialization,

this paper also focuses on bloom filter while

designing a performance intensive application. It is

basically a probabilistic data structure to find out the

existence of given element in a data set. Please note

that there are chances of false positive result. For

e.g. Google HBase, Apache Cassandra uses Bloom

filters to reduce the disk lookups for non-existent

rows or columns.

Avoidance of disk lookups will result in

significant impact in performance of database query

operation of an application. In addition to that

bloom filter will not give false negative for search

operation.

2. WHY PROTOCOL BUFFER AND BLOOM
FILTER FOR PERFORMANCE

INTENSIVE APPLICATIONS.

1) What is Protocol Buffer:

Protocol Buffer is a technique to serialize the

structured data and it basically facilitates

different systems to communicate with each

other either by sending byte stream over the

wire or storing it.

This technique relies on interface definition

language to have common agreement between

the sender and receiver to send and receive the

structured data.

2) How Protocol Buffer works:

Protobuf has three main components that we

need to take care,

 Message descriptors: First step in using

Protobuf is to define our messages structures

in. proto files. It basically contains the

schema information with positions about the

actual object.

 Message implementations: Messages

definitions are not enough to represent and

exchange data in any programming language.

We must generate classes and their respective

objects to handle the data in the respective

programming language. You can use protocol

compiler provided by google to generate the

same.

 Parsing and Serialization: After defining and

creating Protobuf messages, we need to be able

to exchange these messages. Google helps us

here again if we use one of the supported

programming languages.

3) Performance comparison of Protobuf with

other serialization techniques
It has been observed that protobuf is the most

efficient serialization deserialization technique as

it is many times faster than well-established

techniques like Xstream, Java Serialization etc.

When we did the comparison of different

serialization and deserialization techniques over a

set of data.

If serialization in any format permitted,

Protobuf is the best. Please refer to below

mentioned table for serialization performance

aspect of different protocols.

Experiment: To examine the performance of

serialization and deserialization of structured data, an

experiment was designed using the following

hardware and software [2]:

 Hardware: iMac (by Apple Inc.) with Intel
Core2 Duo

 2.66 GHz and 2 GB memory

 Operating System: Mac OS X version 10.6.8
 Java: version 1.6.0 29
 Current version of object serialization

libraries were selected shown in the

following.

The experiment was designed as follows:

 Ten kinds of orders were prepared. They were

orders with ten sizes of options: 0, 100, 200,

300, 400, 500, 600, 700, 800 and 900 options.

 500 iterations were executed for warming up,

and then 500 iterations were executed for

measuring.

 The serialized file size was measured in bytes,

and the execution time was measured in

System.currentTimeMillis().

Table I: Average execution time for serialization and

deserialization protocols [2].

 Serialization
Average (ms.)

Deserialization
Average(ms.)

XStream in

9.7858

4.2166

Journal of Multi Disciplinary Engineering Technologies, Vol. 14, Issue 2

200

JSON

JsonLib

2.9422

22.112

XStream in
XML

2.8698

5.1280

FlexJson

0.9740

1.4978

ThriftJson

0.7422

0.0020

Gson

0.4756

0.3638

JsonMarshall
er

0.4094

0.9874

Jsonic

0.3044

0.9038

Object
serialization
in Java

0.2606

0.2800

JsonSmart

0.2328

0.1710

AvroJson

0.2278

0.4036

Thrift in
binary

0.1654

0.1316

Avro in
binary

0.1672

0.0996

ProtoStuff
with static
schema

0.1750

0.1626

ProtoStuff
with
dynamic
schema

0.1532

0.1922

Jackson

0.1488

0.2098

Protobuf

0.0476

0.1058
.

Fig. 1: Size comparison of objects using different

serialization protocols [2]. X axis represents number of

options and Y axis represents size of objects.

If we refer to serialization and deserialization

tables, protobuf [Table. I] seems to be very efficient

in compare to other serialization techniques as

execution time and size of the serialized object [Fig.

1] is very less and can increase our performance of

application by many times provided it involves

storing the objects at many places.

4) Security aspect of default java serialization

Hackers and security experts do the investigation

of serialization techniques in Java and commonly

used third party libraries and look for various methods

which can be executed during deserialization to harm

various systems.

Attackers can easily execute a denial of service

attack by making deserialization process longer

using the streams known as deserialization bombs.

In this way, an application or system gets

vulnerable to an attack whenever you deserialize a

byte stream that you don’t trust. The best way to

avoid such kind of issue is basically not deserialize

anything.

This paper recommends not to use default java

deserialization while designing a new system.

There are already various mechanism exists

which can be used for object translation between

byte sequence and avoid the dangers of java default

serialization. In addition to it, these mechanisms

also offer various benefits like high performance,

cross platform support and nice ecosystem of

various tools. In comparison to java serialization,

these mechanisms are simpler and don’t support

serialization and deserialization of arbitrary object

graphs. These mechanisms support structured data-

objects consisting of a collection of attribute-value

pairs. This simple abstraction turns out to be enough

for building extremely powerful distributed systems

and simple enough to avoid the serious problems

that have plagued Java serialization since its

inception. Protocol Buffer offered by google is one

of the leading cross-platform structured data

representation and offers above mentioned benefits.

3. WHY BLOOM FILTER IN PERFORMANCE

INTENSIVE APPLICATIONS – SPACE AND

TIME ADVANTAGE

Bloom filter is a specific data structure which is

35000

30000

JSON

25000

20000

Numberd JSON by

ProtoStuff

ThriGBinary

f5000
ObjectSerialize in Java

f0000
Protobuf

5000
AvroBinary

0

0 f00 200 300 400 500 600 700 800 900

Number of options

Journal of Multi Disciplinary Engineering Technologies, Vol. 14, Issue 2

201

specifically designed to search the existence of an

element inside a set while maintain space and time

efficiency.

1) How Bloom Filter works:

An initial Bloom filter is a bit array of m bits, all

initially set to 0. There are k different hash functions

designated, each of which does the mapping or

hashing a set element to one of the m array positions,

resulting in a consistent random distribution.

Generally, k is a minor constant which rely on the

desired false error rate ε, while m is proportional to k

and the number of elements to be added in an array.

Addition of element: To add an element, first it

gets inputted to each the k hash functions to get k

array positions. Resulting positions bits gets set to 1.

Search of element: To search an element in a set,

input element gets presented against k hash functions

to get k array positions. If any of the position derived

after hashing is 0 then it means that element does not

exist in the set. If it exists, then the condition is to

basically have all bit positions must be set to 1. It

might possible that even if all bit position has been

found to be 1, element might not be there. This

phenomenon is known as false positive in bloom

filter.

2) Advantages of Bloom Filter:

Space efficiency: Space efficiency: Bloom filter

does not store the actual items. In this way it’s space

efficient. It’s just an array of integers. It also saves

expensive data scanning across several servers

depending on the use case.

Time efficiency: Bloom Filters have a unique

feature which ensures that the time required to insert

and search a specific element or item inside the set is

fixed constant and this feature is independent of the

number of items existed inside the set.

So, if we are designing a performance intensive

key value store, then we need to handle lot of search

and get queries. If we go by the traditional approach,

then it will take hell lot of time and space just to

check the presence of an item.

For e.g. if we are having a web URL cache. Rule

is to save the results if user had hit a specific URL

more than once for the purpose of content delivery.

Traditional way of doing it to save all hit URL in

some data structure and do the search and count if it

is hit more than once. Alternatively, we can use

bloom filter to find out in our bloom filter using the

bits whether a specific URL exists or not. It will

save lot of space and execution time. In a survey it

has been found that almost ¾ of URL are hit only

once. So, we can imagine how much space and

execution time get saved by using the bloom filter.

Fig. 2: Bloom filter used to speed up answers in a key-

value storage system. values are persisted on a drive

which has slow retrieval times. bloom filter decisions are

much faster.

3) How to calculate false positive of bloom filter:

There are three factors which decides the positive

false rate p in a bloom filter

 m: size of the filter.
 k: number of hash functions.
 n: number of elements inserted in filter.
 p: positive false rate of filter.

Above mentioned combination decides the false

positive rate P by having the equation (1) .

https://en.wikipedia.org/wiki/Bit_array
https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/Hash_function

Journal of Multi Disciplinary Engineering Technologies, Vol. 14, Issue 2

202

 P = (1-e^-km/n) ^k (1)

 k is the optimal number of hash function for a bloom

filter where n is size of bit array and m is the size of the

filter depicted in equation (2).

 k = log(2)(n/m) (2)

4) How to decide which bloom filter to use:

There are various types of bloom filter available as

per the applicability. Some of these bloom filters are

Stable Bloom Filter: stream of data: Stable bloom

filter are the filters which are designed to handle the

streaming of data. As streamed data history can be

infinite, stable bloom filter continuously remove stale

data to make space for more recent data inserted

inside the filter. As stale data is removed, it

introduces the false negative which does not exist in

traditional bloom filter.

Scalable Bloom filter: dynamic data set: This filter

can adapt dynamically to the number of elements

stored, while assuring a minimum false positive error

rate. The technique is based on sequences of standard

Bloom filters with increasing capacity and tighter

false positive error rate probability, to ensure that a

maximum false positive probability can be set in

advance, nevertheless of the number of elements to

be inserted.

Spatial Bloom filter: location privacy: It is a data

structure designed to store location information,

especially in the context of cryptographic protocols

for location privacy.

Layered Bloom filter: how many times data added:

Layered Bloom filters permits keeping history of

how many times an item was added to the Bloom

filter by checking how many layers contain the item.

In this filter, a query operation will generally return

the deepest layer number in which the item was

found in.

4. CONCLUSION:

The proposed work has focused on designing a

performance intensive system in the area of

serialization deserialization using protocol buffer

and search using bloom filter probabilistic data

structure of the stored data.

This paper shows that protocol buffer has very

good performance impact in terms of execution time

[Table I] and size [Fig. 1] for serialization and

deserialization in compare to other existing

mechanisms. Protocol Buffer also take care of the

security aspect as schema and actual data files are

different hence, prevent DOS attacks from tampered

serialized objects. There are few constraints like

human readability and dynamic schema changes

which used needs to look into before using protocol

buffer for the application.

Second aspect of this paper focus on considering

the bloom filter, if your application has lot of

search-based operation where you need to decide

the next course of action based upon the existence

of some information in your application like key

value store.

Usage of bloom filter gives a significant

advantage in terms of execution time [Fig. 2] as

well as storage as it does not store the actual data,

but the bits derived from different hash functions.

User can take advantage of different types of bloom

filters as per the specific usage [Section 3.4].

Before deciding the bloom filter, rate of false

positive should also be considered as there might be

some application where false positive rate should be

low. In those cases, we need to increase the number

of hash functions to decrease the false positive

which in turn might decrease the performance of

bloom filter.

REFERENCES

[1] Gurpreet Kaur and Mohammad Muztaba Fuad. An

Evaluation of Protocol Buffer.

[2] Kazuaki Maeda, Evaluation of Object Serialization

Libraries in XML, JSON and Binary Formats.
[3] A. K. Jain and R. C. Dubes. Algorithms for clustering

data.
[4] Bojan Mrazovac and Dražen Pezer, “Performance

Evaluation of Using Protocol Buffers in the Internet of

Things Communication.”

[5] Google Protocol Buffer by Google,

https://developers.google.com/protocol-

buffers/

https://en.wikipedia.org/wiki/Location_information
https://en.wikipedia.org/wiki/Location_information
https://en.wikipedia.org/wiki/Information_privacy
https://zookeeper.apache.org/
https://zookeeper.apache.org/
https://zookeeper.apache.org/

Journal of Multi Disciplinary Engineering Technologies, Vol. 14, Issue 2

203

[6] Carlos Baquero and Nuno Preguic¸ “Scalable bloom
filters.”

[7] Zhiyang Li, Wenyu Qu and Peng Xiao, “An Efficient

DDoS Detection with Bloom Filter in SDN.”

[8] Junho Jeong, Jong Wha J, Yangsun Lee and Yunsik

Son, “Secure Cloud Storage Service Using Bloom

Filters for the Internet of Things.”

[9] Apache Thrift, http://thrift.apache.org/.

[10] jsonmarshaller -

http://code.google.com/p/jsonmarshaller/.

[11] XStream – About XStream,

http://xstream.codehaus.org/.

[12] M. Slee, A. Agarwal and M. Kwiatkowski, “Thrift:

scalable cross language services implementation”,

Whitepaper, Facebook, 156University Ave, Palo Alto,

CA.

[13] T. Shuang, T. Lin, L. Xiaoling, and J. Yan, “An

efficient method for checking the integrity of data in the

cloud.”

[14] T. Aditya, P. K. Baruah, and R. Mukkamla, “Space-

efficient bloom filters for enforcing integrity of

outsourced data in cloud environments.”

[15] Tong, Endong, et al. “Bloom filter-based workflow

management to enable QoS guarantee in wireless sensor

networks.”

[16] Zhouguo, Chen, et al. “Design of IP Traceback System

based on Generalized Bloom Filter.”

[17] Yan, Qiao, et al. “Software-defined networking (SDN)

and distributed denial of service (DDoS) attacks in

cloud computing environments.”
[18] Bloom Filter, Wikipedia

 https://en.wikipedia.org/wiki/Bloom_filter/

http://thrift.apache.org/
http://code.google.com/p/jsonmarshaller/
http://xstream.codehaus.org/
https://en.wikipedia.org/wiki/Bloom_filter/

