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Abstract –The Conventional used Fuzzy c-means clustering 
technique needs to be initialized manually with the number 
of clusters present in the data. Mountain clustering and 
Subtractive clustering overcome this by calculating the 
number of clusters automatically by analyzing data 
numerically. The purpose of this paper is to compare these 
three algorithms namely Mountain Clustering, Fuzzy C-
means (FCM) and Subtractive Clustering. The experimental 
results are carried out on the synthetic datasets with varying 
distribution. The performances of these algorithms are 
evaluated on the basis of the regression analysis, position of 
the center, number of clusters and root mean square error.  
Keywords – Unsupervised clustering, subtractive clustering, 
mountain clustering, Fuzzy C-means. 

 

1. INTRODUCTION 
Data mining is a helpful approach for recognizing 
patterns in the large volume of data. It is basically 
used to retrieve the relevant information from large 
data sets for several applications involving business 
and other real time applications. Clustering as one of 
the technique of data mining is consider as one of the 
most valuable tool for data analysis. Clustering can 
be defined as the process of grouping a set of data in 
the manner that data within the cluster are more 
similar as compared to data with the other clusters. 
Clustering is used as the basic step of processing in 
many fields for information retrieval like image 

processing, text mining, web mining and biomedical 
[1,2].  
Cluster analysis is a task to be resolved and not an 
algorithm. There are a number of algorithms that can 
perform this task but they all differ in their concept 
of what are the factors considered while clustering 
and how to proficiently allocate them. Unsupervised 
clustering basically involves grouping on the basis of 
the measure of the similarity between center and data 
point. In unsupervised clustering, the clustering 
results correlate with the parameter of the 
algorithms, and with the initial initialization of some 
of the parameters [3]. The fuzzy c-means [8] is 
widely used clustering technique used for this 
purpose. The outcome of the algorithm largely 
depends upon the initial values given by the user. 
These values heavily influence the final solution. 
Due to the random initialization, sometime may 
stuck in local optima. Yager and Filev [5] proposed 
a simple and effective technique for assessing the 
number of clusters and initial positions of the 
centers. The method is based on the mechanism of 
gridding the data space and calculating the potential 
value for effective grid point based on similarity 
measurements from the nearest data points. This 
method is effective but involves high computational 
cost. Further Chiu [3] proposed subtractive 
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clustering, an extension of mountain clustering. This 
method solves the problems related with the 
mountain clustering. This method takes information 
from data points as the contenders for cluster centers, 
in the place of grid points as in the method of 
mountain clustering. This technique is 
computationally effective and depends on the size of 
the data rather than the dimension of the data. The 
main difficulty with this method is that, sometimes it 
fails to locate the real cluster centers as the actual 
cluster centers are not mandatory present at one of 
the data points.  Thus, there is no accurately 
“correct” algorithm for clustering. The motivation 
behind this review and detail analysis is to choose the 
most appropriate algorithm experimentally unless 
there is a mathematical reason to prefer one over the 
other. This paper compares most widely used 
clustering approaches with different concepts. These 
techniques include Fuzzy C-means, Mountain 
clustering and Subtractive clustering.  
The remaining paper is organized as follows. Section 
II defines an overview of the concept of the data 
clustering. Section III presents the mathematical 
formulation of the FCM, Mountain Clustering and 
Subtractive Clustering.  Section IV discusses the 
experimental analysis of the three techniques on the 
basis of position of the center and slope of the 
regression. Further conclusion is presented in 
Section V. 
 

2. OVERVIEW OF DATA CLUSTERING 
Data clustering involves the grouping of a data set 
into groups having higher likeliness within a same 
group than that among other groups. A uniformly 
distributed algorithms may fail or result in artificially 
introduced cluster, hence data set to be grouped must 
have integral grouping to some extent. Sometimes, 
the overlapping groups reduce the efficiency of the 
algorithm and this is related to the proportionality of 
the amount of overlapping [4]. 
The approach of clustering technique generally 
involves, random initialization of the cluster centers, 
followed by optimization process for further 
refinement. But this can be located mathematically 
through the mathematical formulation on the 
distribution of the data points [5,6]. Further through 

retrieved centers, similarity metrics is calculated 
between input vector and the centers, belongingness 
of the particular datapoint to the cluster is calculated. 
Based on the partitioning procedure clustering is 
further divided into hard and soft clustering 
techniques.   
 

• Hard clustering- In this technique, data is 
divided into distinct clusters, where each data 
element belongs to exactly one cluster [7]. 

• Soft clustering-In soft clustering, data 
elements can belong to more than one cluster, 
and associated with each element is a set of 
membership levels. This indicate the degree 
of membership of a particular point with the 
number of clusters [8]. 
 

Some clustering techniques depend on the prior 
knowledge of the number of clusters so that the data 
is partitioned in the given number of clusters. The 
numbers of cluster are given by the user manually. 
These algorithms are said to be unsupervised 
clustering. Here the classifications labels are 
calculated based on the iterative approach of the 
technique as in FCM [9]. But this is not a necessary 
condition, the algorithm may start with finding the 
number of clusters as in Mountain and Subtractive 
Clustering.   
In the datasets where the prior information is not 
sufficiently available, the concept of mountain 
clustering can be used for initial determination of 
cluster centers. Yang and Wu [10] have defined the 
modified mountain clustering algorithm. The 
proposed technique automatically initializes all the 
parameters for the clustering process in accordance 
with the structure of the dataset. Verma et. al. [11] 
has given the concept of improved mountain 
clustering and applied on the gene expression data 
for analyzing biological information they contain. 
Further Gong et. al [12] has proposed stream density 
clustering by using the evolution of the density 
mountain function. This function evaluates the 
changes in data distribution through monitoring the 
changes in the density of the data. Further 
Subtractive Clustering proposed by Chiu [13] in 
1994 is an extension of mountain clustering. The 



subtractive clustering includes data points instead of 
grid points in calculating the centers of the clusters. 
The proposed method reduced the computational 
complexity of the mountain clustering. This 
approach can be used to calculate the number of 
clusters and position of centers. It shows improved 
results while working on high dimensional problems.  
In Subtractive Clustering, the parameter radius is 
used to be initialized by the user, so determining the 
radius of each cluster affects the performances of 
clustering results. To overcome this various hybrid 
and integrated approaches of subtractive clustering 
have been proposed. Shieh et. al. [14] proposed two-
phase clustering algorithm based on subtractive and 
k-nearest neighbour. The proposed technique 
determines the radius of each cluster center using k-
nn clustering concept.  
Further, the concept of Fuzzy Clustering was 
integrated with subtractive clustering to improve the 
performance cluster analysis [15].  
 

3.  MATHEMATICAL FORMULATION 
 
This section involves a detailed discussion and 
mathematical formulation of Fuzzy C-means, 
Mountain Clustering and Subtractive Clustering.  

 
3.1 Fuzzy C-means Clustering (FCM) 

 
In Fuzzy C-means clustering (FCM) which was 
proposed by Bezdek [8] in 1973. It is based on the 
concept of fuzzy partitioning. Here each data point 
belongs to a cluster to a degree of membership grade. 
Fuzzy partitioning is employed such that a given data 
point can belong to several groups with the certain 
degree of belongingness specified by membership 
grades between 0 and 1. However, FCM still tries to 
minimize the cost function while forming clusters.  
U  is the membership matrix that have the values of 
the elements in between 0 and 1. But, here 
membership degree has the constraint that the 
summation of degrees of membership of a data point 
to all the clusters is always equal to one: 
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Further, the Objective function of FCM is defined 
as 
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where c  is the number of the cluster which should 
be more then 1, ijD  is the Euclidean distance 
between the thi  cluster center and the thj  data point; 
and m is used for defining degree of fuzziness.  
The objective function is minimized and the value of 
cluster centers and   membership matrix is repeatedly 
calculated using 
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The algorithm is executed repeatedly until no more 
significant improvement is noticed or some 
maximum number of iteration. The algorithm is 
carried out in the following steps:- 
Step 1: Randomly initialize the membership matrix
U with the constraint of eq 1. 
Step 2: Specify the number of clusters in which data 
is to be partitioned and set the value of  2=m . 
Step 3: Update the distance metrics and eq (3) and 
(4) till the number of iterations or minimum 
threshold value.  
Step 4: Compute the objective function as in eq (2). 
 
Here the value of membership and centers can have 
different values due to random initialization and may 
obstruct in local minima. The number of clusters is 
also set manually.  
 
3.2 Mountain Clustering 

 
Mountain Clustering proposed by Yager and Filev 
[5] in 1994 to calculate the number of clusters 
present in the dat. In a mountain clustering centers of 
the clusters are formed based on the measure of the 
density called the mountain function. This method 



can be used as a pre-processing step for other 
unsupervised clustering techniques. The algorithm 
of the mountain clustering can be defined as: 
Step 1: The grids are formed on the data space and 
the intersections of the grid lines are the potential 
points to calculate the number of clusters denoted by 
V  as a matrix for centers. 
Step 2: A mountain function is constructed, which 
represents the measure of the density. The height of 
the mountain function at the grid points Vv∈  is 
calculated as: 
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where ix  is the thi  and σ  is the application specific 
constant which determines the smoothness and the 
height of the resultant mountain function. The 
equation specifies the effect of distribution of data 
point on the measure of the data density at a point v  
and this measure of the density is inversely 
proportional to the distance between the data points 

ix  and the point under consideration v .  
Step 3: Further the cluster centers are updated 
sequentially from the calculated mountain function. 
The measure of the greatest density measure at the 
selected point will allow to update the first center 
point Obtaining the next cluster center requires 
eliminating the 1c  effect of the first cluster. This is 
done by revising the mountain function: a new 
mountain function is formed by subtracting a scaled 
Gaussian function centred at 1c : 
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The effect of the first cluster is eliminated by the 
operation of subtraction. The new mountain function 

( )vmnew  reduces to zero at 1cv = . 
The second cluster center is selected as the point with 
the greatest value for the new mountain function. 
The process continues until the process of iteration. 
 

 

3.3 Subtractive Clustering 

 
The Subtractive Clustering technique proposed by 
Chiu [13] overcomes the problem of mountain 
clustering. In mountain clustering, the computation 
grows exponentially with the increase in the 
dimension of the data. The mountain function has to 
be evaluated at each grid point. In subtractive 
clustering the problem is resolved by using data 
points as the candidates for the centers of the cluster. 
This makes the algorithm more efficient as compared 
to mountain clustering. The computation is done on 
the basis of size of the problem instead of the 
problem dimension.  
Here each data point participates equally for the 
candidate of the cluster center.  A measure of the 
density at data point ix  is defined as: 
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where ar  represents positive constant for 
neighbourhood radius. This signifies with high 
density will have large number of neighbouring data 
points.  
The density measure of every data point ix  is 
updated as: 
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Where 1cx  is the point chosen with the largest 
density value 1cD . br  represents the positive 
constant defining neighbourhood measure defining 
the reductions in the density measure. Further 
density function is updated, the cluster center is 
selected with the point having the greatest density 
value. This process is updated till the number of 
clusters are obtained.  
 
 
 
 



4. IMPLEMENTATION AND RESULTS 
 
In this section, discussions on the experimental 
evaluations of these techniques have been 
performed. Implementation of FCM, Subtractive 
clustering and Mountain clustering have been carried 
out on the same set of random initialize data. 
Experiments are performed in MATLAB R 2015.  
The data is partitioned into 2 clusters. The Euclidean 
distance is used to measure the similarity between 
the input data vector and the center of the cluster.  
Each clustering algorithm is passed with the same 
data, giving the membership of the data associated 
with the two clusters. The grade of the membership, 
and the minimization of the objective function is 
tested to evaluate the results of all the three 
algorithms. The evaluation of the results has been 
performed on the measure of the root mean square 
error (RMSE). It tells the measure of the spread of 
data around the line of the best fit.  
Regression analysis is also performed to estimate the 
relationship among the variables used to measure the 
membership grades of the data points in the process 
of clustering. It helps to analyse the effect on the 
dependent variable with the change in the values of 
the independent variables. Further discussions have 
been performed on the evaluation of the results for 
each technique.  
 
4.1 Performance on the basis of Position of Centers 

 
FCM is an unsupervised soft clustering technique 
that allows data to be partitioned with the 
membership grade allotted with every number of 
clusters. It alleviates the concept of hard membership 
partition. FCM involves fuzzy membership 
measurement as the basis of the calculation of the 
membership grade and for the identification of the 
centers of the clusters.  
Fig 1 shows the random distribution of the data in the 
two-dimensional space. In Fig 1(a), the point with 
red mark signifies the position of the center of two 
clusters calculated after the optimization of the 
clustering process using FCM. The effect random 
initialization of the centers and the membership 
values does not affect the final values of the result. 

Fig 1 (a) shows the accurate positioning of the cluster 
centers as compared to other two techniques.  
Mountain clustering relies on dividing the data space 
into grid points and calculating a mountain function 
at every grid point. This mountain function is a 
representation of the density of data at this point. The 
performance of mountain clustering is strictly 
affected by the dimension of the problem; the 
computation needed rises exponentially with the 
dimension of input data because the mountain 
function has to be evaluated at each grid point in the 
data space. For a problem with c clusters, n
dimensions, m  data points, and a grid size of g  per 
dimension, the required number of calculations is: 
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So, mountain clustering is not suitable for problems 
of dimensions higher than two or three. Fig 1 (b) 
shows the number of the centers obtained after 
applying mountain clustering to the data. Fig 1(b) 
shows the positions of centers are not as accurately 
plotted as FCM.  
Further in Subtractive Clustering, to reduce the 
number of computations significantly, the density 
function is computed at every data point rather than 
grid point, to make the data linearly proportional to 
the number of input data and avoid being 
exponentially proportional to its dimension. In 
subtractive clustering, a problem with c  clusters and 
m  data points, the required number of calculations 
is:  
 

( )mcmN 12 −+=                                                (10) 
The algorithm of subtractive clustering is stable and 
does not depend on any randomness; this allows the 
output to be fixed as compared to mountain 
clustering. Further, by changing the value of two 
variables ar and br  the performance of the clustering 
is analysed. These variables generally represent the 
neighbourhood of the centers to be taken, as the 
measure of the radius. The measure of these 
variables diminishes the effect of density function 
calculated by other data points.  Typically, the br  

variable is taken to be as 1.5 ar   The value of these 



variables will affect the performance of clustering 
technique. So, these variables are to be tuned  
properly.  So, a value between 0.4 and 0.7 should be  

 
 
adequate for the radius of neighbourhood. 
Fig.1(c) shows the result of subtractive clustering, 
the fig shows the position of the centers of the two 
clusters after applying clustering process. The 
numbers of centers are correctly predicted but the 
centers are too scattered according to the density of 
the data points. Fig.1 shows FCM allocates the 
centers with best accuracy as compared to the other 

two approaches with respect to the distribution of 
data points.  
 

 
 
4.2 Performance on the basis of Slope of Regression 
 
Fig.2 shows the performance of FCM, Mountain 
Clustering and Subtractive Clustering with respect to 
the slope of regression. The Best linear fit is depicted 
by the red line and dotted line generalizes the actual 
spread. The dotted line defines the closeness of the 
spread with the actual spread. Fig.2   

 

  
    (b)     (a) 

    (c) 

Fig. 1 Performance Analysis of the clustering with respect to the position of the center. (a) FCM Clustering (b) 
Mountain Clustering (c) Subtractive Clustering 



 
 
 
(a) shows the regression slope of the FCM where the 
interpolated spread is close to the actual spread 
between the two clusters. Fig 2(b) shows the 
regression slope of mountain clustering, where 
observed results are not as good as FCM and 
subtractive clustering. The result shows the poor 

performance of the clustering techniques with the 
widely spread data points. Fig 2 (c) shows the result 
of the subtractive clustering, where the spread of  
 
 

 

 
two clusters are not uniformly distributed around the 
actual line of slope. Here the variable defining the 

radius (ra and rb) are need to be properly tuned in 
order to balance the effect of neighbouring data 
points. Too small values of the radii will result in 

 

    (c) 

Fig.2 Performance Analysis of the clustering with respect to slope of regression. (a) FCM Clustering (b) Mountain 
Clustering (c) Subtractive Clustering 

    (b)     (a) 



ignoring the effect of neighbouring data points and 
increasing the value will alter the effect.   
Further Table 1. represents performance evaluation 
of all the three clustering techniques on the basis of 
Root mean square error (RMSE) and regression line 
slope [9]. Table 1 shows the performance of FCM is 
better as compared to subtractive and mountain 
clustering.  
 
FCM requires less computation as compare to other 
techniques. FCM shows better results with the 
datasets of higher dimension and is more efficient if 
the knowledge of the number of clusters is known in 
advance or can be predicted from the datasets. 

Mountain clustering requires large number of 
computations with poor performance and degrades 
with increase in the dimensionality of the data set. 
Mountain clustering is suitable with the datasets of 
two or three dimensionality. 

5. CONCLUSION 
The paper reviews the three widely used clustering 
techniques, namely Fuzzy C-means, mountain 
clustering and subtractive clustering. These 
techniques are unsupervised clustering techniques 
where unlabelled data is clustered with the defined 
number of clusters. The mountain clustering is used 
to calculate the number of clusters based on the 
measure of the density of the data points. The 
clusters are so formed that the similarity in each 
cluster is larger than inter clusters. The three 
techniques have been implemented and tested 
against a random distribution of the dataset. The 
results conclude, the performance of the mountain 
clustering decreases with the increase in the 
dimensionality due to its exponential proportionality 
to the dimension of the problem. However, these are 
used where the number of clusters are not known, but 

if the knowledge about the number of clusters is 
known then FCM is widely used with efficient 
results and reduced complexity.  Subtractive 
clustering seems to be a better substitute to mountain 
clustering. But here the radius variable is need to be 
tuned properly for the effective results. Finally, 
clustering techniques can be used in the number of 
application areas where one technique can be nested 
with other and can be used in conjunction with other 
machine learning techniques to increase the overall 
system performance.   
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