
Journal of Multi Disciplinary Engineering Technologies, Vol. 13, Issue 2

52

Multi-Core Concurrency: Guarantees and
Confronts

Rakhee Chhibber1, #, Chandikaditya Kumawat1
1Research Scholar, Mewar University, Gangrar Chittorgarh,

Assistant Professor, Asian School of Business, Noida, U.P.
2Mewar University, Gangrar Chittorgarh,

 #Corresponding Author, Email: rakheechhibber1971@gmail.com

Abstract—Multi-core processors signify a
transformative change in traditional computing and
setting the new trend for high- performance
computing (HPC) where are parallelism is an
ancient concept. This research is focused on the
parallelism technique (data and functional
parallelism) and the different algorithms used in the
multi core processors with a large number of cores.
The chip-level architecture offers better
performance and performance characteristics but
there is a movement towards the chip-level
multiprocessing architectures with a large number
of cores continues to provide significantly increased
performance and power characteristics. However,
this step also offers considerable confronts which
arises due to parallelism or in other words due to
concurrency. In multi-core computing most of the
confronts arises due to parallelism and the fact that
different things can be simultaneous. There are
many algorithms for the concurrency but in this
research, paper is focused for the guarantees and
confronts of multi-core concurrency using the FIFO
algorithm.
Keywords: Multi-core Processors, Parallelism,
Concurrency, Pipelining, Synchronization

1. INTRODUCTION

The guarantees and confronts that results
due to the arrival of a new technology of core
in a computer system (multi-core technology)
[16] are based on the concept of concurrency
which means the execution of more than one
process at the same time. However, when
things happen at the same time, it is not easy
to follow the coordination between a complex
piece of software for interference so firs to fall,
it is essential to differentiate between the
parallelization of application as well as
concurrency and a unique algorithm or
process provide these facilities. An actual
implementation is chosen for the available
possibilities and goes further with that. Since
each core has its own cache, so the only one

operating system which has sufficient
resources and provides a noticeable
improvement to multitasking can handle
intensive tasks in parallel. Synchronization
between the arbitrary numbers of cores in their
access to the shared memory is necessary [17-
21].

Let discuss an example of pizza-making as
if there is two-person one is applying cheese
on the pizza base, and another one apply the
toppings on it simultaneously which results in
a messy pizza but if there are more assembly
lines which can work simultaneously then it
could make pizza more quickly with the
infinite supply of materials but if we check it
in reality, there would be a limited number of
persons to perform the work and possibly
there could be 2 lines while there could be
more and similarly in the multi-core systems,
the number of processors and other resources
decides for the capacity of parallelism which
can be implemented. A picked execution
depends on the facilities provided by the
algorithm itself; parallelism will not help in
this calculation to the algorithm which has
minimal characteristic simultaneousness. So
the program section which runs independently
marked by symbols which provide a place
where these codes need to exchange data and
this even is called as synchronization.

To understand this principle, if we consider
the example of the process of the pizza
preparation which we had already discussed
as there are two persons on can implement
cheese on the pizza base and another spread
the toppings which are two different processes
but if out of these two processes one is faster
and another is slower than the faster process
have to wait until the second process cannot

91
94

Journal of Multi Disciplinary Engineering Technologies, Vol. 13, Issue 2

53

finish so now there is a need of
synchronization between the speed of these
processes.

Fig. 1 Synchronization Point where two
independent processes interact.

Therefore, it is a feature that two

independent processes can work at different
unexpected speed as different employees can
work differently at different shifts. A program,
which produces several independent
processes with unique check-in numbers, is
shown in Figure 2. The autonomous portions
of an application either are called as threads or
processes depending upon the implementation
as shown in Figure 3. There are two ways to
run more than one process simultaneously
either run many processors at the same time
(Data Parallelism) or if different processors
are doing various tasks at the same time
(Functional Parallelism), then you can use the
work segmentation.[18].

Fig. 2 A number of tasks which are running
mutually asynchronously with random
synchronization points, Different threads within a
process executing tasks and independent tasks on
different processes.

2. PARALLELISM

The shift towards multicore processing has
led to a much wider population of developers
being faced with the challenge of exploiting
parallel cores to improve software
performance. Debugging and optimizing
parallel programs is a complex and
demanding task. Tools which support
development of parallel programs should
provide salient information to allow
programmers of multicore systems to
diagnose and distinguish performance
problems.

2.1 Data Parallelism

This concept is very easy to explain with the
help of an example of a 4-bit vector. Let’s

consider a requirement to increase the value
of each access in the array or vector with the
help of a loop. The use of parallel processor
is easiest to explain let take an example of a
4-bit vector on which we want to operate and
assume that there is a requirement to increase
the value of each access in the vector as in
the below code which is an example of loop:

For I = 1 to 4
Begin
Increment the ith value of the processor
End

This problem can be easily parallelize which
will belong to a collective group of the issues
called as “embarrassingly parallel” [1] as

shown in Figure 3 where each array or vector
entry is autonomous and so able to increase
independently and with the help of 4-core
processor, it is easy that each core perform job
on one entry and process the entire process in
one-fourth of the time as taken by a single
processor or it may be even less than 1/4
because there is no requirement of an iterator
for the above pseudo-code is shown in Figure
3 and is known as data parallelism where no
more than one instance of data can be operated
simultaneously. The built-in concurrency
allows acceleration off our times, although
there can be as election if at least four
processors are available in the given
implementation [11]. There are two properties
of this looping problem which make

92
95

Journal of Multi Disciplinary Engineering Technologies, Vol. 13, Issue 2

54

parallelization easy as first the operation on
the input does not depend on any other input,
and second is the number of inputs is already
fixed and known in advance.[1]

Fig. 3 Data Parallelism

This is a case where the operating system
already knows about the parallelism in
advance because there is a constant number
of iterations which are known at compile
time but if there is a 'while' loop or 'loop'
where the number of iterations are calculated
at runtime means it does not know how many
time parallelization has been taken place so
cannot be so neatly parallelized.

2.2 Functional parallelism

The other way of splitting task based on their
functionality as different processors perform
different task for example a program has
many text files “to count the number of

characters” in each one as in the following

pseudo- code:

 For more than one file

Begin
Open a file.
Count the number of characters.
Finally Close that file.
End

Fig 4. Functional Parallelism

Fig. 5 Pipelining

Functional parallelism is shown in Figure 4
where an example of three processors has
been taken and each core is performing a
different task as core 1 opens files; core 2 is
employed to count the characters; and the
core 3 is responsible for closing the files.
There is a fundamental difference between
functional and data parallelism as in the
vector example the parallelism solve
problem by eliminating the loop but the
another example where the three tasks
which are serial in nature there would be no
savings at all because it works only when a
function has repeated iterations. It is clearly
visible in Figure 5 showing pipelining, in
which when the file is opened in 1stcore at
that time 2nd and 3rd cores sit idle because
when a file is opened then it can be read by
the second processor and count the
characters and till this time the 3rd core will
still idle which will start working only when
core 2 will finish its job, which explains that
this method is not beneficial in the case of
only one file. But when real-world
programs and algorithms are considered
then it uses both “data and functional

concurrency” and in several situations both

can be used.
One of the pipeline challenges is called to
balancing of it because the execution of a
program can only as quick as the speed of
the slowest phase as in Figure 5, it has been
shown that the opening files takes longer
time than the counting of characters so
performing rapid counting will not increase
performance but it increase inactive time
among files so the perfect situation for
every pipeline is the distribution of task to
every stage so it takes the same time which
is not only difficult but more or less

9396

Journal of Multi Disciplinary Engineering Technologies, Vol. 13, Issue 2

55

impossible to balance the pipeline
perfectly[20]. The above examples are very
simple examples which have independent
operations but when a calculation of one
operation depends on the results of another
operation then things become complicated
and there are several ways in which these
dependencies arise so some basic issues are
the challenges in parallelizing software for
multi-core like it is not possible to analyse
all the dependencies manually in a program
but some tools are required.

3. PRODUCERS AND CONSUMERS IN

PARALLELISM

Some program uses the producers and
consumers data as shown in (Figure 6), then
it became easier to understand dependency,
one part of the program makes some
calculation which can be used by any other
part, especially in object-oriented approach,
it results at “fine-grained instruction levels”

where objects are also “producers as well as

consumers of the data”.

 Example of Data Parallelism is

X= A+B (Producer of X)
Y=X+3 (consumer of X)

Fig. 6 Producer and consumer in Functional
Parallelism and their processing.

Figure 6 is representing the basic
dependency where a consumer of data wait
sit until the producer has produced that data
but this mainly depend on the language as
well as approach. There are many compilers
had been designed which can implement a
low-level concurrency at the instruction
level by instruction reordering for efficient
execution. It is complicated with languages
like C having pointers and compilers does
not understand the way how various
pointers can relate for optimization because
of two reasons associated with pointers as
“pointer aliasing and pointer arithmetic”.

The “aliasing of a pointer” is a very regular

phenomenon in a “C program” for example

let’s take an example of a function (void foo

(*image imagePtr)) which accept an image
as pointer parameter (imagePtr) and a
program which call this function for 2
different images leftImage and rightImage.
So when this function is called with the left
image as a parameter refer the same data as
when it is called with the right image as
shown in (Figure 7).

Fig. 7 A function foo which accept an image
pointer and different pointers pointing to the same
data at different times with different image.

Pointer arithmetic is another noticeable
problem because, if the program knows the
start location for a pointer but when a
manipulation has been taken place in the
pointers it may possible that it may point
some other address which is not required to
point.
randomPtr= knownPtr + sizeof(someObject)

9497

Journal of Multi Disciplinary Engineering Technologies, Vol. 13, Issue 2

56

Fig. 8 2 pointers firstPtr and secondPtr working on
the same matrix create a dependency (a dynamic
inspection).

For example, when we want to access a
matrix with the help of a pointer and make
changes, it can be difficult to recognize later
operations, in which a different pointer
accesses the same matrix (with a “different

pointer arithmetic”) called “read that data

(Figure 8)[20]”. If the another check uses

data which is going to perform the first scan,
then the program will work incorrectly by
giving those similarities as independent. In
several cases, this reliance cannot be
recognized by a fixed scrutiny so the only
mode to find out is to watch in the execution
time that the signs are directed at one place.
The discussed “dependencies” has focused

on a consumer who should stay until the
manufacturer has the data: “Write earlier to

reading” and in contrast “If a producer is

about to rewrite a memory location”, then

he must ensure that all the users of old data
are ready earlier than overwriting of
previous data over latest data (Figure 9)[14].
“This is called anti-dependency so
everything which has been discussed about
dependency is also valid for anti-
dependencies, apart from that until all the
readings are done; we have to wait to write:
Read before writing”.

Fig. 9 firstPtr reads array and secondPtr rewrites is
an example of anti-dependency.

3.1 More complex situations of dependencies
as in Loops

The situation of dependencies become more
complicated if a program consists of a loop
and targeted for parallelization. For example:
consider code as an example.

“For I = 1 to 4
 Begin
 Add the (i-1) th value to the ith value
 End”

Fig 10. Iterations are in parallel, each one should
wait until the necessary data is produced by the
previous recurrence, which causes displacement,
which increases the time of total calculation
required for independent iterations.

These changes slightly as a result of each loop
repetition, resulting in the next loop being
processed in repetition. Thus, the second loop
repetition cannot be started till the first
repetition has generated its data so the loop
iterations can not one in parallel because they
are offset by its antecedent (Figure 10).

As the largely calculation time is less than the
time it takes to cycle through the processor, “it

is not as fast as there was no dependency
between iterations of a cycle.” Such

dependence is called "loop- carrier" (or "loop-
carry") dependence. It becomes still further
complex if used for nested loops that iterate
over much iteration. Another example is a
two-dimensional matrix using i variable for
rows and j for columns as shown in (Figure
11.a.)[14]. Now assume that the value of a cell
based upon the fresh value of the cell exist in
xthe previous row (Figure 11.b.).

95
98

Journal of Multi Disciplinary Engineering Technologies, Vol. 13, Issue 2

57

Fig. 11(a). 4 X 4 matrix with accessing variable I
for rows and j for columns. (b). if the value of one
cell depends on the new value

“For j=1 to 4(outer loop)
 Begin
 for i=1 to 4 (inner loop)
 Begin
 add the (i, j-1)th value to the (i,j)th value
 end
 end”

There are many ways to parallel this code but
depend upon how many core we have for
example if we go for maximum number of
cores, we must require 16 cores as there are 16
cells in 4 X 4 matrix. If 4 cores are available,
one row can be assign to one core but in this
case, the second line could not start until the
first cell of the first line was read as in Figure
12.a. But if it could be completely
parallelized then first entries of all the rows
can start simultaneously, second entries have
to wait until the processing has not completed
on their respective first-entries as in Figure
12.b[14]. So having many cores doesn’t

guarantee for the speed as only 4 cores can
execute this code in efficient manner as shown
in Figure 13 in which each column has been
assigned to each core therefore “the cycle can

be processed faster because one core does not
have to wait for the other core”. The nested

loops raise a concept of 'loop distance' which
is acquired by each iterator as shown in figure
12.a where the dependency has shown by
arrows and represent the load distance as it is
0 for i is therefore no dependency and 1 for j
because the data used in a cell depends on its
previous cell, this means the j’s previous

iteration.

Fig. 12 (a). separate row of a matrix to separate core
and each row wait until the first cell gets read. (b).
First cell of each row to its own core but all other
cores are waiting until the first entry of each row
has been processed.

Fig. 13. 4 Cores each with the independent row.

So “the loop distance for i and j is [0,1]” but

if there is slightly change in a code as shown
below than dependency becomes 2 on j
instead of one and “the loop distance for j is

also 2” as Figure 14[14] which shows that

2nd line does not have to wait for the 1st
row because it does not depend on it.
“for j =1 to 4
 Begin
 for i=1 to 4
 Begin
 add the (i, j-2)th value to the (i, j)th value
 End
 End”

According to the above code the third row
should wait for the first line, so we can
continue to parallel with the more core then
work will require half time for the previous
example. Looping is an important measure
of data synchronization because it is a core
productive data and the second is not

9699

Journal of Multi Disciplinary Engineering Technologies, Vol. 13, Issue 2

58

immediately consuming. Before
consumption of data, the person who is
going to consume might have to stay for a
series of iterations. It depends on how
things are parallel to the things. During the
waiting, the producer may continue its
repetition and so writes more data. For
example, such data can be written in “first-
in first- out (FIFO)” and the distance of the

loop finds the length of FIFO. Let’s apply

the previous example on 4-core at the place
of eight cores (Figure 15 a and b).

Fig. 15 (a). loop distance is 2 when execution with
8 cores. (b). loop distance 2 when execution with 4
cores.
Although, the third row should wait for the
first line (Figure 15) but we can continue to
parallel with the more core. If we want, then
work in the required half time for the
previous example. Although it may look
dark, looping is an important measure of
data synchronization. This is a core
productive data and the second is not
immediately consuming. Before
consumption of data, the consuming person
may have to wait for a series of iterations. It
depends on how things are parallel to the
things. During the waiting, the producer
may continue its repetition and so writes
more data. For example, such data can be
written in “first-in first- out(FIFO) memory,
and the distance” of the loop finds the

length of FIFO. Let’s apply the previous

example on 4-core at the place of eight
cores as in Figure 15.b shows that as soon
as cell[1,1] accessed it should with the “cell

[1,2], but cell[1,3] requires the result of
cell[1,1] which is a case of an anti-
dependency”[14].

Fig. 16 two cores out of 4 have different
assignment of cells.
As shown above, we can apply it only on an
array where each core, keep the entire
outcome separately. Though, in multi-core,
the determination of which “thread get the

thread” done by the operating system so if

each cell is formed as a thread then the
codes can be allocated in different manner.
“For example, the first two cores can

replace the last two cells (Figure 16)[7]”.

Now Core1 will have to give its results to
Core 2 (and so on). Its solution is that the
core1 [1, 1] puts the result of a safe place
until it is ready for [1, 3]. Then [1, 2] can
continue and when it is done then Core 2
can get the necessary result. However, [1, 2]
results are ready even before preparing for
core1, 2 [outcome]. [1, 2] The result cannot
be kept in the same place as the only [1,1]
result, otherwise it will be overwritten.
“One type of FIFO structure is used

between core 1 and core 2 solutions (Fig. 18)
[7]. Since the loop space for j is 2, the FIFO
must be at least 2 deep to avoid burning.
The solution is also effective for any thread
assignment capable of creating an operating
system, rather than strictly encoding an
array implementation, using a FIFO. ”

Fig 17. FIFO mode of communication between
cores
FIFO can be expensive sometimes but it
depends on its implementation. Here it is for

97
100

Journal of Multi Disciplinary Engineering Technologies, Vol. 13, Issue 2

59

understanding the loop clearly because
“manual determination” of loop deletion can

be quite puzzling. A loop can have many
variables in the body, with each separate
loop distance. Branches make things more
complicated [14].

4. SHARING OF RESOURCES

Another major challenge with the
concurrency is that it may possible that
unlike jobs may require the similar resources
simultaneously the same time and so
challenges for a multithread program on the
single-core system are same in all threads for
this reason use of some important segments
and locks and their use is implemented but
this solution used in multi-threaded
programs may not work effectively for
multi-core systems. Let’s take a simple

example of the method to stop another thread
from breaking an important section of code
is to suspend the block ages in this important
section. It can work for the same core, but it
will not work if another core reaches a shared
space (or loss). In multi-core there is a new
concept of having its private cache by each
core and the repeated universal data in the
cache which may not be sometimes in
synchronization with the latest version of
data which results in the complications
because cash consistency approaches can be
difficult itself, as distinct platforms have
dissimilar schemas so a developer can
overlook the cache on the single-core system
but not in case of multi-core systems.
Synchronization between the arbitrary
numbers of cores in their access to the shared
memory is necessary. The task allocation
problem in multi-core processor based
massively parallel systems [23].

5. CONCLUSION AND FUTURE WORK

Most of the confronts in multi-core
processing happen due to parallelism and
the fact that dissimilar things can be
simultaneous. When we are used for events
occurring in a given order, there may be a
slight mental gymnastics to consider that
two operations can be arbitrarily in relation
to each other in two different parallel

threads. There are many more algorithms
other than FIFO to organize data in multiple
core processors, so further research can be
conducted on the basis of other algorithms
and compare.

REFERENCES
[1] Creeger, M. “Multicore CPUs for the

masses”, Queue, 3(7), 64,2005
[2] Darlington, J., Ghanem, M., Guo, Y., & To, H. W.

Guided resource organization in heterogeneous
parallel computing. Journal of High-Performance
Computing, 4(10), 13-23,1997.

[3] Geer, D. “Chip makers turn to multi-core
processors”. Computer, 38(5), 11-13, 2005

[4] Geer, D. “For programmers, multicore chips mean
multiple challenges”. Computer, 40(9), 17-19,
2007

[5] Gorder, P. F. (2007). Multicore processors for
science and engineering. Computing in science &
engineering, 9(2), 3-7, 2007

[6] Kahle, J.,” The cell processor architecture”.
In 38th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO'05),
pp. 3. IEEE. 2005

[7] Knight, W. “Two heads are better than one [dual-
core processors]”. IEE Review, 51(9), 32-35,2005

[8] Merritt, R, “Multicore Goals Mesh at Hot
Chips”. EETimes Online, 2007

[9] Merritt, R. “Multicore puts screws to parallel-
programming models”. EETimes Online, 2008.

[10] Merritt, R “X86 war cuts to the cores”. Electronic
Engineering Times-Manhasset-, 1494, 1, 2007

[11] Moyer, B “The Promise and Challenges of
Concurrency”, Real World Multicore Embedded
Systems ,11-31, Newnes,2013

[12] Muthana, P. Swaminathan, P., Tummala, R.,
Sundaram, V., Wan, L., Bhattacharya, S. K., &
Raj, P. M. “Packaging of multi-core
microprocessors: Tradeoffs and potential
solutions”. In Proceedings Electronic Components
and Technology, 2005. ECTC'05, IEEE. 1895-
1903,2005

[13] Ni, Jun. "Multi-core Programming for Medical
Imaging", 2013

[14] Oshana, R. “Software Engineering of Embedded
and Real-Time Systems. Software Engineering for
Embedded Systems”, 1–

32,2013, doi:10.1016/b978-0-12-415917-
4.00001-3

[15] R. Merritt, “CPU Designers Debate Multi-core
Future”, EETimes Online, 2008.

[16] Rouse, M. “Definition: multi-core
processor”. TechTarget.,2013

[17] Schauer, B., “Multicore processors–a
necessity”. ProQuest discovery guides, 1-14,2008

[18] Shrout, R., Intel Shows 48-core x86 Processor as
Single-chip Cloud Computer. URL: http://www.
pcper. com/reviews/Processors/Intel-Shows-48-

98101

Journal of Multi Disciplinary Engineering Technologies, Vol. 13, Issue 2

60

corex86-Processor-Single-chip-Cloud-Computer
,2012.

[19] Sodan, A. C., Machina, J., Deshmeh, A.,
Macnaughton, K., & Esbaugh, B. “Parallelism
via multithreaded and multicore
CPUs”. Computer, 43(3), 24-32.2010

[20] Suleman, A., “What makes parallel
programming hard, Future Chips”,2013.

[21] Roy, A., Xu, J., & Chowdhury, M. H, “Multi-
core processors: A new way forward and
challenges”. In 2008 International Conference
on Microelectronics ,454-457, IEEE,2008

[22] Stoif, C., Schoeberl, M., Liccardi, B., &
Haase, J,” Hardware synchronization for
embedded multi-core processors”, 2011 IEEE
International Symposium of Circuits and
Systems,2011, doi:10.1109/iscas.2011.59381
26

[23] Liu, Y., Zhang, X., Li, H., & Qian,
D.” Allocating Tasks in Multi-core Processor
based Parallel System”, 2007 IFIP
International Conference on Network and
Parallel Computing Workshops,2007

99 102

