Checkpointing Distributed Applications on Mobile
Computers)

R K Chauhan*, Parveen Kumar **, R K Jaryal***
*Deptt. of Computer Sc. & Applications, K.U., Kurukshetra (HRY), India-136119
**Deptt. of CSE, NIT, Hamirpur (HP), India-177005.
***Deptt. of Electrical Engg., NIT Hamirpur [HP]-177005.
pk223475@yahoo.com

Abstract

Checkpointing is an efficient way of implementing fault tolerance in distributed systems. Mobile
computing raises many new issues, such as highmobility, lack of stable storage on mobile hosts
(MHs), low bandwidth of wireless channels, limited battery life and disconnections that make
the traditional checkpointing protocols unsuitable to checkpoint such systems. Checkpointing
can be independent, synchronous, quasi-synchronous, or message logging based. In the present
study, we review the concepts of Mobile Distributed Systems and Checkpointing. We discuss
various aspects and types of checkpointing techniques. We specifically address the challenges
and guidelines for designing checkpointing algorithms for mobile distributed systems.

Key Words: FaultTolerance, Consistent Global State, Check-pointing, Mobile Systems.

1. Mobile Distributed Computing
System

Recent years have witnessed rapid
development of mobile communications. In
the future, we will expect more and more
people will use some portable units such as
notebooks or personal data assistants. A
mobile distributed computing system is a
distributed system where some of the
processes are running on mobile hosts
(MHs). The term “mobile” implies able to
move while retaining its network
connections. A host that can move while
retaining its network connections is an MH.
An MH communicates with other nodes of
the system via a special node called mobile
support station (MSS) [1], [2]. An MH can
directly communicate with an MSS _(and
vice versa) only if the MH is physically
located within the cell serviced by the MSS.
Acellis a geographical area around an MSS
in which it can support an MH. An MH can
change its geographical position freely

from one-cell to another or even to an area
covered By no cell. At any given instant of
time, an MH may logically belong to only
one cell; its current cell defines the MH's
location, and the MH is considered local to
the MSS providing wireless coveragein the
cell. An MSS has both wired and wireless

" links and acts as an interface between the

static network and a part of the mobile
network. Static network connects all MSSs.
A static node that has no support to MH can
be considered as an MSS with no MH.
Critical applications are required to execute
fault-tolerantly on such systems [1], [2].
The system model for supporting host

- mobility consists of two distinct set of

entities: a large number of MHs and
relatively fewer number of MSSs [Refer
Figure 1.1]. All fixed hosts and the
communication path between them
constitute the static/fixed network. The
fixed network connects islands of wireless
cells, each comprising of an MSS and the
local MHs. The static network provides

BUCOE'S MET Journal

40

reliable, sequenced delivery of messages
between any two MSSs, with arbitrary
message latency. Similarly, the wireless
network within a cell ensures FIFO delivery
of messages between an MSS and a local
MH, i.e., there exists a FIFO channel from
an MH to its local MSS, and another FIFO
channel from the MSS to the MH. If an MH
did not leave the cell, then every message
sent to it from the local MSS would be
received in the sequence in which they are

sent [1], [2]. Message communication from
an MH MH, to another MH MH, occurs as
follows. MH, first sends the message to its
local MSS MSS, using the wireless link.
MSS, forwards it to MSS,, the local MSS of
MH,, via the fixed network. MSS, then
transmits it to MH, over its wireless
network. However, the location of MH, may
not be known to MSS,, therefore, MSS, may
require to first determining the location of

Wireless Cell /
Wireless Cell
'MH. MH ‘
MH
i ®)
MSS MSS
WIRED NETWORK
FIXED HOST |———
m
\ "
MSS
.................... MSS
MH MHe
Wireless Cell Wireless Cell

Figure 1.1 The system model for supporting host mobility

MH,. This is essentially the problem faced
by network

layerrouting protocols[2].

Mobile Hosts often disconnect from the rest
of the network. In our model, disconnection
is distinct from failure. Disconnections are
elective or volunteer by nature, so a mobile
host informs the system prior to its
occurrence and executes an application-
specific discomnection protocol if
necessary [2]. Discor1mection can be
voluntary on involuntary. We use the term

“disconnection” to always imply a
voluntary disconnection. We refer to an
abrupt or involuntary disconnection as a
failure. '

2. Checkpointing

Fault tolerance can be achieved through
some kind of redundancy.-Redundancy can
be temporal or spatial. In temporal
redundancy, i.e., checkpoint-restart, an

application is restarted from an earlier
Q

41

BVEOE'S MET Journal

checkpoint or recovery point after a fault.
This may result in the loss of some
processing and applications may not be able
to meet strict t1m1ng targets. In spatial
redundancy, many copies of the application
execute on different processors
concurrently and strict timing constraints
can be met. But the cost of providing fault
tolerance using spatlal redundancy is quite
high and may require extra hardware.
Checkpoint-Restart or Backward error
recovery is quite inexpensive and does not
require extra hardware in general. Besides
providing fault tolerance, checkpointing
" can be used for process migration,
debugging distributed applications, job
swapping, postmortem analysis and stable
property detection [4]. There are two
approaches forerror recovery:

o Forward Error Recovery
° Backward Error Recovery

In forward error recovery techniques, the
nature of errors and damage caused by faults
must be completely and accurately assessed
and so it becomes possible to remove those
errors in the process state and enable the
process to move forward [23]. Indistributed
" system, accurate assessment of all the faults
may not be possible. In backward error
recovery techniques, the nature of faults
need not be predlcted and in gase of error,
the process state is restored to previous
error-free state. It is independent of the
nature of faults. Thus, backward error
recovery is more general. recovery
mechanism [6]. There are three steps
involved in backward-error recovery. These
are:

o Checkpointing the error-free
state periodically

o Restorationincase of failure

o Restartfrom the restored state
Backward error recovery is also. known as
checkpoint-restore-restart (CRR) or
checkpoint-restart (CR). The checkpointing
process is executed periddically to advance
the recovery line. On failure, processes in
distributed computation rolls back to latest
checkpoint and then restart from the rolled
back state.

A checkpoint is a local state of a process
saved on stable storage. In a distributed

system, since the processes in the system do

not share /memory, a global state of the
systemis defined as a set of local states, one
from each process. The state of channels
corresponding to a global state is the set of
messages sent but not yet received. A global
state is said to be “consistent” if it contains
no orphan message; i.e., a inessage whose
receive event is recorded, bt its send event
is lost [8], [12], [27], [28]. In Figure 1.2, the
initial global state {C,;, Cyy, Csp Cayy Cso}is
consistent. It should be noted that initial
global state is always consistent, because, it
can not contain any orphan message. In
Figure 1.2, the Global State {C,,, C,, C,,
C.,, C,,} is also consistent, because, it does
not possess any orphan message. It needs to
be noted that by definition, m, is not an
orphan message. The Global State {C,,, C,,,
C,, C. C,}is inconsistent because it
includes the orphan message m, [Refer
Figure 1.2]. By definition, m, is an orphan
message. To recover from a failure, the
systemrestarts its execution froma previous
consistent global state saved on the stable
storage during fault-free execution. This
saves all the computation done up to the last °
checkpointed state and only the
computation done thereafter needs to be
redone [8],[12],[27],[28].

After a failure, a system must be-restored to a
consistent system state. Essentially, a system
state is consistent if it could have occurred
during the preceding egecution of the system

BVCOE'S MET Journal

42

P, o
Ca My Mg c
32
>
P3 ! IcJl I
30 ms my
C4| C42
L : »
Cu my m. 9 © My
o i —1 +
Csi 52
oA . /

ICheckpoint -
/ Computation Message

Figure 1.2 Consistent and Inconsistent Global States

from its initial state, regardless of the relative
speeds of individual processes. This assumes
that the total execution of the system is
equivalent to some fault free execution [4],
[8], [12]. It has been shown that two local
checkpoints being causally unrelated is a
necessary but not sufficient condition for
them to belong to the same consistent global
checkpoint. This problem was first addressed
by Netzer and Xu who"introduced the notion
of a Z-path between local checkpoints to
capture both their causal and hidden
dependencies [15]. Considering a checkpoint
and communication pattern, the rollback
dependency trackability property stipulates
that there is no, hidden dependency between
local checkpoints. To be able to recover a
system state, all of its individual process
states must be able to be restored. A consistent
System state in which each process state can
be restored is thus called a recoverable system
state. Processes in a distributed system
communicate by sending and receiving
messages. A process can record its own state
and messages it sends gnd receives; it can

record nothing else. To determine a global
system state, a process P, must enlist the
cooperation of other processes that must
record their own local states and send the
recorded local states to P, All processes
cannot record their local states at precisely the
same instant unless they have access to a
common clock. We assume that processes do
not share clocks or memory. The problem is to
devise algorithms by which processes record
their own states and the states of
communication channels so that the set of
process and channel states recorded form a
global system state. The global state detection
algorithm is to be superimposed on the
underlying computation; it must run
concurrently with, but not alter, this
underlying computation [8].

The state detection algorithm plays the role of
a group of photographers observing a
panoramic, dynamic scene, such as asky filled
with migrating birds-a scene so vast that it
cannot be captured by a single photograph.
The photographers must take several

43

BVCOE'S MET Journal

snapshots and piece the snapshots together to
form a picture of the overall scene. All
snapshots cannot be taken at precisely the
same instant because of synchronization
problems. Furthermore, the photographers
- should not disturb the process that is being
photographed. Yet, the composite picture
should be meaningful. The problem before us
is to define meaningful and then to determine
how the photographs should be taken [8].

The problem of taking a checkpoint in a
message passing distributed system is quite
complex because any arbitrary set of
checkpoints cannot be used for recovery
[8], [27], [28]. This is du€ to the fact that the
set of checkpoints used for recovery must
form a consistent global state. In backward
error recovery, depending on the

programmer's- intervention in process of °

checkpointing; the classification can be:
J User-Triggered checkpointing
° Transparent Checkpointing

User triggered. checkpointing schemes
require user interaction and are useful in
reducing the stable storage -requirement.
These are generally employed where the user
has the knowledge ot the computation being
performed and can decide the location of the
checkpoints. The main problem is the
identification of the checkpoint location by a
user [4].

The transparent checkpointing techniques

~ do not require user interaction and can be
classified into following categories:

° Uncoordinated Check-
pointing

° Coordinated Checkpointing

° Quasi-Synchronous or
L Communication-induced
Checkpointing

. Message Logging based
Checkpointing

2.1 Uncoordinated Checkpointing
In uncoordinated or independent
checkpointing, processes do not coordinate
their checkpointing activity and each process
records its local checkpoint independently
[6]. It allows each process the maximum
autonomy in deciding when to take
checkpoint, i.e., each process may take a
checkpoint /when it is most convenient. [t
eliminates/coordination overhead all together
and forms a consistent global state on
recovery after a fault [6]. After a failure, a
consistent global checkpoint is established by
tracking the dependencies. It may require
cascaded rollbacks that may lead to the initial
state due to domino-effect [12] [27], [28].
[29]. It requires multiple checkpoints to be
saved for each process and periodically
invokes garbage collection algorithm to
reclaim the checkpoints that are no longer
needed. In this scheme, a process may take a
useless checkpoint that will never be a part of
global consistent state. Useless checkpoints
incur overhead without advancing the
recovery line [29].

2.2 . Coordinated Checkpointing

In coordinated or synchronous checkpointing,
processes take checkpoints in such a manner
that the resulting global state is consistent.
Mostly it follows two-phase commit structure
[71, [8], [9], [12], [17], [25], [26]. In the first
phase, processes take tentative checkpoints
and in the second phase, these are made
permanent. The main advantage is that only
one permanent checkpoint and at most one
tentative checkpoint is required to be stored.
In case of a fault, processes rollback fo last
checkpointed state.

A straightforward approach to coordinated
checkpointing is to block communications
while the checkpointing protocol executes

BVCOE'S MET Journal

44

==

[30]. A coordinator takes a checkpoint and
broadcasts a request message to all processes,
asking them to take a checkpoint. When a
process receives the message, it stops its
executions, flushes all the communication
channels, takes a tentative checkpoint, and
sends an acknowledgement message back to
the coordinator. After the coordinator receives
acknowledgements from all processes, it
~ broadcasts a commit message that completes
the two-phase checkpoint protocol. On
receiving commit, a process converts its
tentative checkpoint into permanent one and
discards its old permanent checkpoint, if any.
The process is then free to resume execution

and exchange messages with other processes.

The coordinated checkpointing protocols can
be classified into two types: blocking and
non-blocking. In blocking algorithms, as
mentioned above, some blocking of processes
takes place during checkpointing [12], [26].
In non-blocking algorithms, no blocking of
processes is required for checkpointing [7],
[8], [9], [17]. The coordinated checkpointing
algorithms can also be classified into
- following two categories: minimum-process
and all process algorithms. In all-process
coordinated checkpointing algorithms, every
process is required to take its checkpoint in an
initiation [8], [9]. In minimum-process
algorithms, a subset of interacting processes
is required to take their checkpoints in an
initiation{7],[12], 171, [26].

To further reduce the system messages,
needed to synchronize the checkpointing,
loosely synchronized clocks are used [11],
[29] . Neves et al. [16] gave a loosely
synchronized coordinated checkpointing
protocol that removes the overhead of
synchronization. This approach assumes that
. the clocks at the processes are loosely
synchronized. Loosely synchronized clocks
can trigger the local checkpoints at all the
processes roughly at the same time without a
coordinator. After taking a checkpoint, a
process waits for a period, which is sum of

maximum time to detect a failure of other
process in the system and the maximum
deviation between clocks. It is assumed that
all checkpoints belonging to a particular
coordination session have been taken without
the need of exchanging any message. If a
failure occurs, it is detected within the
specified time and the protocol is aborted.

Parveen Kumar et al [21] are the first to design
blocking non-minimum-process algorithms
that significantly reduce the blocking time as
well as the number of useless checkpoints,
where ¢nly minimum number of processes
commit their checkpoints. A process takes its
forced/induced checkpoint during
checkpointing procedure only if there is a
good probability that it will actually get the
checkpoint request in the current initiation.

23 Quasi-Synchronous or
Communication-induced
checkpointing

Communication-induced checkpointing
avoids the domino-effect without requiring all
checkpoints to be coordinated [5], [11], [29].
In these protocols, processes take two kinds of
checkpoints, locat and forced. Local
checkpoints can be taken independently,
while forced checkpoints are taken to
guarantee the eventual progress of the
recovery line and to minimize useless
checkpoints. As opposed to coordinated
checkpointing, these protocols do no
exchange any special coordination messages
to deterimnine when forced checkpoints should
be taken. But, they piggyback protocol
specific information [generally checkpoint
sequence numbers] on each application

message; the receiver then uses this
information to decide if it should take a forced
checkpoint. This decision is based on the
receiver determining if past communication
and checkpoint patterns can lead to the
creation of useless checkpoints; a forced
checkpoint is taken to break these patterns [5],

[11],[29].

45

BUCOE'S MET Journal

24 Message Logging based
checkpointing protocols

Message-logging protocols are popular for
building systems that can tolerate process
crash failures [3], [11]. [19], [29]. Message
logging and checkpointing can be used to
provide fault tolerance in distributed systems
in which all inter-process communication is
through messages. Each message received by
a process is saved in message log on stable
storage. No coordination is required between
the checkpointing of different processes or
between message logging and checkpointing.
The execution of each process is assumed to
be deterministic between received messages,
and all processes are assumed to execute on
fail stop processes.

When a process crashes, a new process is
created in its place. The new process is given
the appropriate recorded local state, and then
the logged messages are replayed in the order
the process originally received them. All
message-logging protocols require that once a
crashed process recovers, its state needs to be
-consistent with the states of the other
processes [3], [11], [19], [29]. This
consistency requirement is usually expressed
in terms of orphan processes, which are
surviving processes whose states are
inconsistent with the recovered states of
crashed processes. Thus, message- logging
protocols guarantee that upon recovery, no
process is an orphan. This requirement can be
enforced either by avoiding the creation of
orphans during an execution, as pessimistic
protocols do, or by taking appropriate actions
during recovery to eliminate all orphans as
optimistic protocols do. Pradhan et al [22]
have proposed that message logging based
checkpointing is quite suitable for mobile
environments.

2.5 Frequency of Checkpointing

A checkpointing algorithm executes in
parallel with the underlying computation.

Therefore, the overheads introduced due to
checkpointing should be minimized.
Checkpointing should enable a user to recover
quickly and not lose substantial computation
in case of an error, which necessitates frequent
checkpointing and consequently significant
overhead. The number of checkpoints
initiated should be such that the cost of
information loss due to failure is small and the
overhead due to checkpointing is not
significant. These depend on the failure
probability and the importance of
computation. For example, in transaction
processing system when every transaction is
important/ and information loss is not
permitted, a checkpoint may be taken after
every transaction, increasing the checkpoint
overhead significantly [11].

2.6 Contentsof a Checkpoint

The state of a process has to be saved in stable
storage so that the process can be restarted in
case of an error. The state/context includes
code, data, and stack segments along with the
environment and the register contents.
Environment has the information about the
various files currently in use and the file
pointers. In case of message passing systems,
environment variables include those
messages which are sent and not yet received.
The information that is necessary to resumc a
computaffon after it is pre-empted is called the
context of that computation [11].

277 Overheads of a Check-
pointing Algorithm

During a failure free run, every global

checkpoint incurs coordination overhead and

- context saving overhead in a multiprocessor

system. In parallel/distributed systems,
coordination among processes is needed to
obtain a consistent global state. Special
messages and piggybacked information with
regular messages .are used to obtain
coordination among processes. Coordination
overhead is due to special control messages
and piggybacked information. The book-

BVCOE'S MET Journal

46

keeping operations necessary to maintain
~oordination also contribute to coordination
overhead. The time taken to save the global
context of a computation is defined as the
context saving overhead. If stable storage is
not available with every node in a
multiprocessor system, the context is
transferred over the network. Network
transmission delay is also included in the
overhead [11].

2.8 Application of Checkpointing

Besides its use to recover from failures,
checkpointing is also used in debugging
distributed programs and migrating processes
in multiprocessor system. In debugging
distributed programs, state changes of a
process during execution are monitored at
various time instances. Checkpoints assist in
such monitoring. To balance the load of
processors in the distributed system,
processes are moved from heavily loaded
processors to lightly loaded ones.
Checkpointing a process periodically
provides the information necessary to move it
from one processor to another. With
checkpointing, an arbitrary temporal section
of a program's runtime can be extracted for
exhaustive analysis without the need to restart
the program from beginning [4], [11].

3. Hybrid Checkpointing

Protocols

Minimum-process coordinated
checkpointing is a suitable approach to
introduce fault tolerance in mobile systems
transparently. In this approach, some
processes may not checkpoint for several
checkpoint initiations as they are not part of
minimum processes to checkpoint. In case of
a recovery after a fault, such processes may
rollback to far earlier checkpointed state and
thus may cause greater loss of computation In
coordinated checkpointing, where all
processes checkpoint, the recovery line is

advanced for all processes but the
checkpointing overhead may be exceedingly

- high, especially in mobile environments;

because, it will consume the scarce resources
of mobile nodes even if they are not part of
minimum processes to checkpoint. To
optimize both, i.e.. the checkpointing
overhead and the loss of computation on
recovery, a hybrid checkpointing algorithm,
where an all-process checkpointing is forced
after the execution of minimum-process
coordinated checkpointing algorithm for a
fixed number of times, is proposed. Thus, the
Mobile/ nodes with low activity or in doze
mode Operation may not be disturbed in case
of minimum-process checkpointing and the
recovery line is advanced for each process
after an all-process checkpoint [18], [19],
[20].

In coordinated checkpointing, if a single node
fails to checkpoint in an initiation, the whole
checkpointing effort goes waste. It becomes
difficult for multiple MHs to checkpoint
synchronously due to disconnections and
unreliable wireless channels. MHs are prone
to frequent failures, which will require
frequent rollback of all processes. In the
literature, there are hybrid checkpointing
protocols, where fixed hosts checkpoint
synchronously and MHs checkpoint
independently [10], [13], [14]. These schemes
give MHs autonomy in taking checkpoints.
AnMH canrecover independently by using its
recent checkpoint and message log without
forcing other nodes to rollback.

In deterministic systems, if two processes start
in the same state, and both receive the
identical sequence of inputs, they will produce
the identical sequence outputs and will finish
in the same state. The state of a process is thus
completely determined by its starting state
and by sequence of messages it has received
[24], [29]. Anti-message is exactly like an
original message in format and content except
in one field, its sign. Two messages that are
identical except for opposite signs are called
anti-messages of one another. All messages

47

BVCOE'S MET Journal

sent explicitly by user programs have a
positive (+) sign; and their anti-messages
have a negative sign (-). Whenever a message
and its anti-message occur in the same queue,
they immediately annihilate one another.
Thus the result of enqueueing a message may
be to shorten the queue by one message rather
- than lengthen it by one. Singh et al [24]
proposed a minimum-process coordinated
checkpointing algorithm for deterministic
mobile distributed systems, where no useless
checkpoint is taken, no blocking of processes
takes place, and anti-messages of very few
.messages are logged during checkpointing. In
other words, they eliminate useless
checkpoints and blocking of processes both at
the cost of logging anti-messages of selective
messages only during checkpointing.

-4, Challenges and Guidelines for

Designing Checkpointing
Algorithms for Mobile
Distributed Computing
Systems

The existence of mobile nodes in a distributed
system introduces new issues that need proper
handling while designing a -checkpointing
algorithm for such systems. These issues are
mobility, disconnections, finite power source,
vulnerable to physical damage, lack of stable
storage etc. [1], [2], [7], [25]. The location of
an MH within the network, as represented by
its current local MSS, changes with time.
Checkpointing schemes that send control
messages to MHs, will need to first locate the
MH within the network, and thereby incur a
search overhead [2]. Due to vulnerability of
mobile computers to catastrophic failures,
" disk storage of an MH is not acceptably stable
for storing message logs or local checkpoints.
Checkpointing schemes must therefore, rely
. on an alternative stable repository foran MH's
local checkpoint [2]. Disconnections of one or
more MHs should not prevent recording the
global state of an application executing on
MHs. It should be noted that disconnection of

an MH is a voluntary operation, and frequent
disconnections of MHs is an expected feature
of the mobile computing environments [2].
The battery at the MH has limited life. To save
energy, the MH can power down individual
components during periods of low activity [2].
This strategy is referred to as the doze mode
operation. The MH in doze mode is awakened
on receiving a message. Therefore, energy
conservation and low bandwidth constraints
require the checkpointing algorithms to
minimiZe the number of synchronization
messages and the number of checkpoints.

The ne/w issues make traditional
checkpointing techniques unsuitable to
checkpoint mobile distributed systems [1],
[2], [7], [25]. Prakash-Singhal [25] proposed
that a good checkpointing protocol for mobile
distributed systems should have low memory
overheads on MHs, low overheads on wireless
channels and should avoid awakening of an
MH in doze mode operation. The
disconnection of MHs should not lead to
infinite wait state. The algorithm should be
non-intrusive and should force minimum
number of processes to take their local
checkpoints.

Minimur-process coordinated checkpointing
is an attractive approach to introduce fault
tolerance in mobile distributed systems
transparently [25]. It avoids domino-effect,
minimizes stable storage requirements, and
forces only minimum interacting processes to
checkpoint. To, recover from a failure, the
system simply restarts its execution from a
previous consistent global checkpoint saved
on the stable storage. But, it has the following
disadvantages [7]. Some blocking of
processes takes place or some useless
checkpoints are taken. In order to record a
consistent global checkpoint, processes must
synchronize their checkpointing activities. In
other words, when a process initiates
checkpointing procedure, it asks all relevant
processes to take their checkpoints.
Therefore, coordinated checkpointing suffers

BVCOE'S MET Journal

48

from high overhead associated with the
checkpointing process. Sometimes,
checkpoint sequence numbers are
piggybacked along with computation
messages. If a single process fails to

checkpoint, the whole checkpointing effort of

the particular initiation goes waste.

Acharya, A. [2] cast distributed systems with
mobile hosts into a two tier structure: 1)a
network of fixed hosts with more resources in
. terms of storage, computing, and
communication, and 2) mobile hosts, which
may operate in a disconnected, or doze mode,
connected - by a ‘low bandwidth wireless
connection to this network. They propose a

two tier principle for structuring distributed -

algorithms for this model: To the extent
possible, computation and communication
costs of an algorithm is borne by the static

REFERENCES

network. The core objective of the algorithm
is achieved through a distributed execution
amongst the fixed hosts while performing
only those operations at the mobile hosts that
are necessary for the desired overal

functionality. '

In wireless cellular network, mobile
computing based on a two-tier coordinated
checkpointing algorithm reduces the number
of synchronization messages.

5. Conclusions

. In this paper, we have presented concepts of

mobile distributed systems and
checkpointing. We discussed various aspects
and types of checkpointing techniques. We
specifically addressed the challenges and
guidelines for designing checkpointing
algorithms for mobile distributed systems.

1.

Acharya A. and Badrinath B. R, “Checkpointing Distributed Applications on Mobile
Computers,” Proceedings of the 3" International Conference on Parallel and Distributed
Information Systems, pp. 73-80, September 1994.

Acharya A., “Structuring Distributed Algorithms and Services for networks with Mobile
Hosts”, Ph.D. Thesis, Rutgers University, 1995.

Alvisi, Lorenzo and Marzullo, Keith,* Message Logging: Pessimistic, Optimistic, Causal,
and Optimal”, /EEE Transactions on Software Engineering, Vol. 24, No. 2, February 1998,
pR. 149-159. '

Avi Ziv and Jehoshua Bruck, “ Checkpointing in Parallel and Distributed Systems”, Book
Chapter from Parallel and Distributed Computing Handbook edited by Albert Z. H.

‘Zomaya, pp.274-302, Mc Graw Hill, 1996.

Baldoni R., Hélary J-M., Mostefaoui A. and Raynal M., “A Communication- Induced
Checkpointing Protocol that Ensures Rollback-Dependency Trackability,” Proceedings of
the International Symposium on Fault-Tolerant-Computing Systems, pp. 68-77, June 1997.
Bhargava B. and Lian S. R., “Independent Checkpointing and Concurrent Rollback for
Recovery in Distributed Systems-An Optimistic Approach,” Proceedings of 17" IEEE
Symposium on Reliable Distributed Systems, pp. 3-12, 1988. '
Cao G. and Singhal M., “Mutable Checkpoints: A New Checkpointing Approach for Mobile
Computing systems,” IEEE Transaction On Parallel and Distributed Systems,vol. 12, no. 2,
pp: 157-172, February 2001. ' a

Chandy K. M. and Lamport L., “Distributed Snapshots: Determining Global State of
Distributed Systems,” ACM Transaction on Computing Systems, vol. 3, No. 1, pp. 63-75,

Februfuy 1985.

E— 49

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

© 22,

23.

24,

25.

26.

27.

BVCOE'S MET Journal 50

Elnozahy E.N., Johnson D.B. and Zwaenepoel W., “The Performance of Consistent
Checkpointing,” Proceedings of the 11" Symposium on Reliable Distributed Systems, pp.
39-47, October 1992. - ?
Higaki H. and Takizawa M., “Checkpoint-recovery Protocol for Reliable Mobile Systems,”
Trans. of Information processing Japan, vol. 40, no.1, pp. 236-244, Jan. 1999.
Kalaiselvi, S., Rajaraman, V., “A Survey of Checkpointing Algorithms for Parallel and
Distributed Systems”, Sadhna, Vol. 25, Part 5, October 2000, pp. 489-510.
Koo R. and Toueg S., “Checkpointing and Roll-Back Recovery for Distributed Systems,”
IEEE Trans. onSoftware Engineering,vol. 13,n0. 1, pp. 23-31, January 1987.
Lalit Kumar, Parveen Kumar, R K Chauhan, “Logging based Coordinated Checkpointing in
Mobile Distributed Computing Systems”, IETE Journal of Research, vol. 51, no. 6, pp. 485-
490,2005. 4
Lalit Kumar, Parveen Kumar, R K Chauhan, “Message Logging and Checkpointing in
Mobile Computing”, Journal of Multi-disciplinary Enéineering Technologies, Vol.1,No.1,
2005, pp. 61-66.
Netzer, R.H. and Xu,J ,“Necessary and Sufficient Conditions for Consistent Global
Snapshots”, IEEE Trans. Parallel and Distributed Systems 6,2, pp 165-169, 1995.
Neves N. and Fuchs W. K., “Adaptive Recovery for Mobile Environments,
Communications of the ACM, vol. 40, no. 1, pp. 68-74, January 1997.
Parveen Kumar, Lalit Kumar, R K Chauhan, VK Gupta “A Non-Intrusive Minimum Process
Synchronous Checkpointing Protocol for Mobile Distributed Systems” Proceedings of
IEEE ICPW(-2005, January 2005.
Parveen Kumar, Lalit Kumar, R K Chauhan, “A low overhead Non-intrusive Hybrid
ynchronous checkpointing protocol for mobile systems”, Journal of Multidisciplinary
Engineering Technologies, Vol.1,No. 1, pp40-50,2005.
Parveen Kumar, Lalit Kumar, R K Chauhan, “Synchronous Cheekpointing Protocols for
Mobile Distributed Systems: A Comparative Study”, International Journal of information
and computing science, Volurme 8, No.2, 2005, pp 14-21.
Parveen Kumar, Lalit Kumar, R K Chauhan, “A Hybrid Coordinated

Checkpointing Protocol for Mobile Computing Systems”, IETE journal of research, Vol
52,No. 2&3, pp 247-254,2006.
Parveen Kumar, Lalit Kumar, R K Chauhan, “A Synchronous Checkpointing Protocol for
Mobile Distributed Systems: A Probabilistic Approach”, Accepted for Publication in
International Journal of Information and Computer Security, 2006.
Pradhan D.K.. Krishana P.P. and Vaidya N.H., “Recoverable Mobile Environment: Design
and Trade-off Analysis,” Proceedings 26" International Symposium on Fault-Tolerant
Computing, pp. 16-25, 1996.
Pradhan D K. and VaidyaN., “Roll-forward Checkpointing Scheme: Concurrent Retry with
Non-dedicated Spares,” Proceedings of the IEEE Workshop on Fault-Tolerant Parallel and
Disiributed Systems, pp. 166-174, July 1992.
Pushpendra Singh, Gilbert Cabillic, “A Checkpointing Algorithm for Mobile Computing
Environment”, LNCS, No. 2775, pp 65-74,2003.
Prakash R. and Singhal M., “Low-Cost Checkpointing and Failure Recovery in Mobile
Computing Systems,” IEEE Transaction On Parallel and Distributed Systems, vol. 7, no.
10, pp. 1035-1048, October1996.
R K Chauhan, Parveen Kumar, Lalit Kumar, “A coordinated checkpointing protocol for
mobile computing systems”, To appear in Infernational Journal of information and

»

28.

29.

30.

31.

computing science, Vol 9,No. 1,2006.

Randall, B, “ System Structure for Software Fault Tolerance”, IEEE Trans. on Software
Engineering, 1,2,220-232,1975.

Russell, D.L., “State Restoration in Systems of Communicating Processes”, [EEE
Trans. Software Engineering, 6,2.183-194, 1980.

Elnozahy E:N., Alvisi L., Wang Y.M. and Johnson D.B., “A Survey of Rollback-Recovery
Protocols in Message-Passing Systems,” ACM Computing Surveys, vol. 34, no. 3, pp. 375-
408,2002.

Tamir, Y., Sequin, C.H., “Error Recovery in multi-computers using global checkpoints”, In
Proceedings of the International Conference on Parallel Processing, pp. 32-41, 1984

/

/
/

R K Chauhan*, Parveen Kumar **, R K Jaryal***
*Deptt. of Computer Sc. & Applications, K.U., Kurukshetra (HRY), India-136119
- **¥Deptt. of CSE, NIT, Hamirpur (HP), India-177005.
***Deptt. of Electrical Engg., NIT Hamirpur [HP]-177005.
pk223475@yahoo.com

51 BVUCOE'S MET Journal

