A Low-overhead Non-Intrusive Hybrid Synchronous

Checkpointing Protocol for

Parveen Kumar*
Lalit Kumar*.
R. K. chauhan**

ABSTRACT

Mobﬂe computing raises many new issues, such as lack of stablestorage low
bandwidth of wireless channels, high mobility and limited battéry life. These

- issues make traditional checkpointing algorithms unsuitable for

checkpomtmg mobile distributed systems. Minimum process Coordinated
checkpomtingwls good approach to ifitroduce fault toleranoe ina distribul'ed
system transparently This approach is - domino-free and requires at most two
checkpoints of each process on stable storage, and*forces only interacting
processes to checkpomt Sometimes it also _requires plggyb%:kmg of
mfomtatlon onto normal messages; blocking of the underlying computatlon
or takmgsome useless?hed(pomts Some*of the; ‘processes’ thatare:not-part
of interacting set may not checkpoint: for several checkpoi nt: initiatlons Thus,
to take care of such processes and to get thetadvantage of; mlmmum process
checkpointing, we propose a non-intrusnve hybrid: checkpomtmg iprotocol,

where an all process checkpointlng is. forted'after‘the execution:of minimum
proces§ checkpointing algorithm for a fixed number sof times. We also
optimize the information plggybacked onto eaeh message and; the number of
useless checkpomts during mmimum process checkpomtmg :

Key words ;: Fault tolerance, checkpomting,xconsistent global state dommo
effect, coordinated checkpomtmg, mobile systems. -

occurs, the process rolls back and restarts from the

1. INTRODUCTION

A mobile distributed computing system (MDCS) is a
distributed system where some processes are running
on mobile hosts (MHs). An MH can change its
geographical position freely from one cell to another
oreven toan area covered by nocell. A mobile host
communicates with other nodes of the distributed
system via a special node called mobile support
. station (MSS). A cell is a geographical area around an
MSS in which it can support an MH. MSS has both
wired and wireless links and acts as an interface
between thé static network and a part of the mobile
network. Static network connects all fixed nodes in the
system including the MSSs. A static node that has no
supportto MH can be considered as MSS with no MH.

Checkpointing can be used for fault tolerance
provisioning in MDCSs. A checkpoint requires storing
the state of a proeess on stable storage. When a fault

checkpointing state. This saves all the computation

- done up to the last checkpointed state and only the

computations done after that need to be redone.
Checkpointing in distributed systems involve taking a
checkpoint by all the processes or at least by a set of
processes that interact with one another in performing
a distributed computation. This is called consistent
global state. To recover from a failure, the system
restarts its execution from a previous consistent global
checkpoint saved on the stable storage. A system state
is said to be consistent if it contains no orphan
message; i.e., a message whose receive event is
recorded in the state, but its send event is lost. MDCSs
raise many new issues such as mobility of nodes, low
bandwidth of wireless channels, and lack of stable
storage on mobile nodes, disconnections, limited*
battery power and high failure rate of mobile nodes.
These issues. make traditional checkpointing

40

BVCOE's MET Journal

algorithms unsuitable for MDCSs [7].

In"coordinated or synchronous checkpointing, all
processes take checkpaints in such a manner that the
resulting global state ‘is consistent. Mostly the
checkpointing protocol follows the two-phase commit
structure {11]. In the first phase, all processes take
tentative checkpoints and in the second phase, these
are made permanent. The main advantage is that only
one permanent checkpoint and at most one tentative
checkpoint s required to be stored for each process on
stable storage and the recovery is very simple.

Most of the research in the area of coordinated
chetkpointing concentrates on minimizing
synchronization messages, minimizing the number of
processes that participate in recording a new global

checkpoint, mbn-intrusiveness, minimizing the

number of processes that rollback. A recent result in
coordinated checkpointing states that minimizing the
number of processes to checkpoint and not blocking
the underlying computation during checkpointing is
not possible [4]. Recently, there has been an attempt to
combine minimum process cheekpointing and non-
blocking [15]. But this protocol may lead to
inconsistencies in some situations [4], [5].

Cao and Singhal achieved both by introducing the
concept of mutable checkpoints [5]. Though only
minimum number of processes takes permanent
checkpoints but the actual number of processes that
take checkpoints is more than minimum required. The
checkpoints taken by these extra processes are useless
and are discarded at the end of the checkpointing
algorithm. The number of useless checkpoints
depends upon the duration, say uncertainty period,
during which an application message can force a
checkpoint on a process. In this paper, we propose a
coordinated checkpointing scheme for mobile
distributed systems, which is hybrid of minimum
process and all process coordinated checkpointing,
does not block the underlying computation during
checkpointing and also optimizes the information
piggybacked on each message. The number of useless
induced checkpoints is also reduced by reducing the
uncertainty periods of processes as in [21].

We have proposed a hybrid of minimum process and
all process coordinated checkpointing protocol to
checkpoint MD®s. In minimum process
checkpointing, some processes may not take
checkpoints for several checkpointing intervals, and

-

in all process-coordinated checkpointing all processes
need to checkpoint for every initiation of the protocol.
Where as in the former case, some of the processes
may not advance their recovery line for several
checkpointing intervals and in case of faults, the
amount of computation lost by such processes may be
too large. In the latter case the recovery line is
advanced for all processes after every global
checkpoint but the checkpointing overhead may be
exceedingly high because all processes are forced to
checkpoint. So, we have proposed a solution to these
problems by forcing a all process coordinated
checkpoint after fixed number of minimum process
coordinated cHeckpoints. In the study under
consideration, we have taken the all process
checkpointing after every three minimum process
checkpoints.

. The rest of the paper is organized as follows. Section 2

presents system model. In Section 3, we describe the
optimal checkpointing algorithm. The correctness
proof is provided in Section 4. In section 5, we
compare the proposed algorithm with existing ones.
Section 6 presents conclusions. ‘

2. System Model

Our system model is similar [5] and [lll. A mobile
computing system consists of a large number of MHs
and relatively fewer MSSs. An MSS has both wired and
wireless links and acts as an interface between the
static network and a part of the mobile network. Static
network connects all MSSs. A cell is a logical or
geographical area covered by an MSS. An MH can
directly communicate with an MSS by a reliable FIFO
wireless, channel only if it is present in the cell
supported by the MSS.

There are n spdtially separated sequential processes
denoted by P,, P,, ..., P,, running on mobile hosts
(MHs) and static hosts (MSSs), forming a mobile
distributed computing system. The processes do no
share common memory or common clock. Message
passing is only way for processes to communicate
with each other. Each process progresses at its own
speed and messages are exchanged through reliable
channels, whose transmission delays are finite but
arbitrary. The messages generated by the underlying
computation are referred to as computation messages
or simply messages, and are denoted by mi. A process
is in the tell of MSS means the process is either
running on the MSS or on an MH supported by it. It

BVCOE's MET Journal

41

also includes the processes of MHs, which have been
disconnected from the MSS but their relevant
information is still with this MSS. Every process is
assumed to have taken a checkpoint with Cl
(checkpointing interval) [000] immediately before
execution begins. The ith Checkpointing interval of a
process denotes all the computation performed
between its ith and (i+1)* checkpoint, includirg the
ith checkpoint butnotthe (i + 1)" checkpoint.

3. The Optimal Checkpointing Algorithm
3.1 Basic Idea

Initiator procéss coflects the direct dependencies of all
processes, computes minimum set (a set of processes

which need to take checkpoints along with the

initiator), and sends the checkpoint request fQ
processes in the minimum set. This will reduce the
time to take a coordinated checkpoint. If. new
dependencies are created during ch%ckpointing
process, those are updated and a correctminimum set
is formed. By doing so, number of useless checkpoints
is optimized.

In order to address different checkpointing intervals

(Cls), we have replaced integer csn (checkpoint
sequence number) used in [4], [5] with three bits CI.
We have considered only eight different
checkpointing intervals and so the information
piggybacked with application messages is just three
bits. We have not considered Cl of one bit or two bits
suitable because by using one bit Cl we shall be able to
dlstmgunslfonly two Cls, and_by using two bits we
shall be able to distinguish four Cls, which we assume
to be insufficient. In case of three bits, we shall be able
to distinguish eight different Cls and we found that it is
just sufficient for all practical purposes. We assume
that no message is delayed so that it reaches
destination after seven Cls,

We have proposed a hybrid of minimum process and
all process coordinated checkpointing protocol for
checkpointing mobile distributed systems. In
minimum process coordinated checkpointing, some
processes may not take their checkpoints for several
checkpointing intervals, and in all process
coordinated checkpointing all processes need to
checkpoint for every initiation of the protocol. Where
as in the former case, some of the processes may not
advance their recovery line for s&veral checkpointing
intervals and in case of faults, the amount of
computation lost by such processes maybetoo large.

- tentative checkpoint,

'
¢

In the latter case the recovery line is advanced for all
processes after every global checkpoint but the
checkpointing overhead may be exceedingly high
because all processes are forced to checkpoint. So, we
have proposed a solution to these problems by forcing
an all process coordinated checkpoint after the
execution of minimum process coordinated
checkpointing algorithm for a fixed number of times.
In the study under consideration, we have taken an all
process global checkpoint after every three minimum
process global checkpoints, which can be mcreased to
seven without much effort.

3.2 Example

We explain our protocol with the help of an example
with reference to Figure 1. Initially every process is
assumed to have taken a checkpoint with CI [000]. At
time t,, P, initiates checkpointing process and sends
request to all processes for their direct dependency
vectors. Attime t,, P, receives the dependency vectors
from all processes, computes the minimum set {which
in case of Figure 1is {P,, P,, P,, P.}]. It takes its own
updates Cl and sends.
checkpoint request to processes in the minimum set.
Attimet,, P, receives the checkpoint request, takes the
tentative checkpoint, and updates its current Cl.

During time t, to t,, P, receives m, from P;. P, learns
that P, is not in the minimum set. P, sends checkpoint
request to P, and also inform the initiator to include P,

.inthe minimum set. However, due to very lesstime in

the formation of minimum set, we will have very less
number of such messages. On receiving the
checkpoint request, P, takes the tentative checkpoint.

After taking the tentative checkpoint, P, sends the
messages m10, along with its current CI [001], to P,.
P, takes the induced checkpoints and updates its Cl
before processing the messages because following
conditions are met: (i) P, was in checkpointing state
while sending the message (i) P, was not in
checkpointing state at the time of receiving the
message (iii) P,'s next Cl [001], at the time of receiving
the message, is equal to P,'s CI [001] piggybacked
with the message (iv) P, has sent at least one message
i.e. m2 since last checkpoint- When P, gets the
checkpoint request, it converts its induced checkpoint
into tentative one. After taking the induced
checkpoint, P, sends the messages m9 to P,. P, takes
the induced checkpoint before processing the

42

BYCOE's MET journal

message for the sa above. It does not receive the
checkpoint request in the current initiation and
discards its induced checkpoint on receiving commit.

After taking the tentative checkpoint, P, sends the
message mé to P,. P, updates its Cl and checkpointing
state before processing the message, because, above
mentioned conditigns, except condition (iv), are met.
After receiving m6, P, sends the message m8 to P,. P,
takes the induced checkpoint before processing the
message and converts it into tentative one when it gets
the checkpoint request from the initiator.

At time t,, P, receives responses from all relevant
processes and sends the commit or abort checkpoint
message to all processes. On commit, processes
[which in case of figure 1 are P, and P;], who have not
taken any checkpoint in the current initiation or
whose induced checkpoint has been discarded, also

update their Cls as if they have also committed their ;

checkpoint and their previous checkpoints are taken
for the global checkpoint formation.

checkpointing process.

() Each process P, maintains the following data
structures, which are preferably stored on local
MSS:

cci : three bits current Cl.
pci : threebits immediate last Cl.
nci : threebitsnextCl

a flag that indicates that the process has
taken the tentative checkpoint.

: aflag that indicates that the process has
taken the induced checkpoint.

tentative :
induced

i a ;ag, initialized to zero, set to 1 on a
checkpoint.

: a bit vector of size n. ddvifj]=1, if P,
receives a message from Pj such that P,
becomes causally dependent upon P,
otherwise ddvifj]=0. Initially, the bit
vector is initialized to zeroes for all
processes except for itself, which is

c_state

ddvi]

me reasons mentioned initialized to 1. For MH, it is kept at local
MSS. '
[001
o | t., _
[000 l thl ; \ms.ooo / l t,
I .
Pz 0:{0 U e
[000] m,.000 [001] 007 m .'.‘."001
P3 | '.' . ‘.‘:. .".
[000] m,.000 My
P4 .“ ., .‘..‘ -
| t,
[OQO] / I " ."." ".“‘ .
Ps J-I
i ,.000 ool ™
f000] L
P S
L 001 -/ii[001]
[000] . ¢ m,.001
P,
[000] [001]
Fiture 1
3.3 Data Structures Send : a flag at a process; initialized to '0' on

Here, we describe the data structures used in the
checkpointing protocol. A process that initiates
checkpointing, is called initiator process and-its local
MSS is called initiator MSS. If the initiator process is
on an MSS, then the MSS is the initiator MSS. Data
structures are initialized on the completion of a

a tentative orinduced checkpoint. Set to
'"1' when P, sends first message after
checkpoint.
(ii) Initiator MSS maintains the following Data
structures: '

edv]] a bit }v‘ector.of size n, computed by

- BVCOE's MET Journal

43

taking transitive closure of ddv{] of all processes with
the ddv(] of initiator process. Minimum set= { Pk such
thatedvik]=1}

1] : is a’bjt vector of length n. R[i]=1 if
checkpoint response has been received
from the process Pi. When the checkpoint
request is sent to all MSSs, this bit vector is
initialized toall zeroes: '

: a flag lmtlahzed to 0 Set ta 1 after
maximum tirme for co'Ilectlng global
checkpoint. "

(iii) Each MSS(including i initiator MSS) mamtalns the,

following datastructures: . - -

DD : bit vector of 1ength n. Dfi]=1 implies

process Piis running inthe cell of MSS.

2]} tisa bit vector of Iength h. E[i]=1 implies
checkpoint request has: “been sent to
process Piinitscell. Initialized to all Zeroes
when MSS switches to checkpointing state.

: is a bit vector of length n. EE[i]=1 implies
checkpoint response has been received
from the process Pi. Initialized to all zeroes
when MSS switches to checkpointing state.

: a flag at MSS. Initialized to '0'. Set to '1'

when some relevant process in its cell " fails

to take the tentative checkpoint.

a bit vector of length n. new d [i]=1

implies Pi has joined minimum set.

Initialized to all zeroes after completion of

checkpointing process.

P, : checkpoint initiator process identification.

ccl,

timer;

EE[]

s_bit

new_df]:

: current checkpoint interval {(cci) of the
initiator process.

checkpointing : a flag at MSS that indicates some of
the processes in its cell are in checkpointing
state. Set to '1' when checkpoint request is
senttoa process runningin its cell.

linitialized to '0' on the completion of the
checkpointing process.

g chkpt: a flag that indicates global checkpoint

collection has been initiated and is not yet _

complete.

matd,.4]] : a bit dependency matrix to determine
whether a message of old Cl will affect the

ddv{] or not. n rows denote the n processes
and 4 columns denote the 4 previous
checkpointing intervals. used to determine
whether a message of old Cl will affect

the ddv{] or not.

3 _adink list which can fonmln at most four
“elements. Maintains’ checkpointing
intervals and their location in matd(].

ci_list

(iv) Mamtenance of leferent Checkpointing
Intervals

Initially for a process pci, cci and nci are [000], [000]
and [001] respectively. When a process takes an
induced or a teptative checkpomt or switches to
checkpointing state, it sets pcn=cc1 cci=nci;
nc|=modulo 8(nci+ +).

When we say that‘a process updates its cci, it means it
updates its pci, cci and nci as described above.

On global checkpoint commit, a process, who has not
switched to checkpointing " state in_the current

initiation, also updates pci, cci and nci as mentioned

above. Other processes continue with their updated
Cls even if their checkpoints have been discarded on
commit. On checkpoirit abort, all updating on Cls are
also undone When no chieckpointing process is going
on, then all the processes are running in the same Cl. -

(v) Maintenance of matdfand ci_list

Initially, an all process global.checkpoint commit,
with ¢ci=000, is assumed, and matd(] and ci_list are
initialized by using the procedure described below.
On commit, matd]] and ci list aré updated as
follows: —
if(cci= =000 cci= =100)
{
for(k=1;k< =n;k+ +)
matdlk,1]=1;
for(k= 1ton)
for(l= 2to4)
matd[k,[]=0;
free(ci_list);
add((cci, 1), ci_list);
}

elseif(cci= =001 cci= =101)

for(k=1;k<=n;k++)

{
matdfk,2]=1;
if edvlk]= =1) matdlk,1]1=0;

}
add((cci,2), ci_list);

} .
elseif (cci==010 cci==110)

fortk=1;k< =n;k+ +)
{

BVCOE's MET Journal

matdfk,3]=1;
if(edv[k]= =1) {matd[k,2]=0; matdik,11=0}

add((cci,3), ci_list);
elseif(cci= =011 cci= =111)

for(k= 1;k<=n;k+ +)

{
matd(k,4]=1;
if (edv[k] = =1)matd([k,3]=0;
matdlk,2]=0; matd[k,1]=0;}

}
add((cci,4), ci_list);

3.4 The Checkpointing Algorithm

Any process P, can initiate the checkpointing process.
If MH, wants to initiate, it sends a request to its current
MSS that initiates and coordinates checkpointing
process on behalf of MH,. If some global checkpoint
recording is already going on, then this initiation is
ignored. If the current checkpointing interval is (011)
or (111) then an all process checkpointing is taken,
otherwise, minimum process checkpointing is
initiated.

When an MH sends an application message, it needs
to fitst send to its local MSS over the wireless cell. The
MSS can piggyback appropriate information onto the
application message, and then route it to the
appropriate destination. Conversely, when the MSS
receives an application message to be forwarded to a
local MSS, it first updates the relevant vectors that it
maintains for the MH, strips all piggybacked
information from the message, and then forwards it to
the MH. Thus, MH sends and receives application
messages that do not contain any additional
information; it is only responsible for checkpointing
its local state appropriately and transferring it to the
MSS. '

3.4.1 Minimum Process Checkpointing

The initiator MSS sends the request to all MSSs to send
the ddvl] (direct dependency vectors) for their
processes. On receiving the request, a MSS records the
identity of the initiator process and MSS, and sends
back the ddv] of its processes. Before receiving the
ddv[] of all processes, if the initiator MSS receives a
request for ddv] from some other MSS and its initiator
process ID is lower than the other initiator process | D,
then it discards its own initiation. Alternatively,-on

receiving the ddv]] vectors of all processes, the
initiator MSS computes the edv[] (effective
dependency vector) i.e. minimum set. [nitiator
process takes the tentative checkpoint and initiator
MSS sends the checkpoint request to all-MSSs along
with edv]]. '

On receiving a checkpoint request, an MSS sends the
checkpoint request to those processes in the minimum
setwhich are runningin its cell. When an MH receives
a checkpoint request, it takes the tentative checkpoint
if it has not taken the induced checkpoint to this
initiation. If it has already taken the induced
checkpoint to this initiation, it simply converts its
induced checkpoint into tentative one.

For adisconnected MH, that is a member of minimum
set, the MSS that nas its disconnected checkpoint,
converts its disconnécted checkpoint into tentative

one. After taking the checkpoint, the various data

structures are updated. When a process takes any kind
of checkpoint, it updates its current Cl and other data
structures.

On receiving the checkpoint request, a process also
compares bitwise, edvfland its own ddv]l.Then it
finds the processes Pk for which ddv [k]=1 and
edvlk]=0. If such processes are found then, the
checkpoint request is also sent to these processes and
arequest is also sent to initiator MSS to include these
processes in the minimum set,

When a process sends a message, it appends its cci (
currentCl) and c_state with the it. When a process Pi
receivesa message from other process Pj and m.cci

-~ is not equal to ncii, then the message is processed and

no checkpoint is taken. Otherwise, it means that Pj has
taken a checkpoint in the current initiation before
sending m. Pi checks if the following conditions are
met:

1. Pywasinthe checkpointing state before send ingm

2. P, has sent at least one message since last
checkpoint [5]

3. P,wasnot in checkpointing state while receiving m

If all of these conditions are satisfied,. R, takes an
induced checkpoint before processing m.

If only conditions 1 and 3 are satisfied, Pi updates its
cci, nci, pci, c_state, as if it has taken a checkpoint,
before processing m. A process, who has switched
Checkpointing state without taking any checkpoint,
does not get the checkpoint request.

BVCOE's MET Journal

45

When an MSS learns that all of its processes have taken
the tentative checkpoint successfully or at least one of
its processes has failed to take the tentative checkpoint
successfully, it sends the response message to the
initiator MSS. If, after sending the response message, a
MSS receives the include_relevant() message, and
learns that there is at least one process in new_d[l
which is running in its cell and it has not taken the
tentative checkpoint, then the MSS requests such
process to take checkpoints. It again sends the
response message to initiator MSS.

Finally, initiator MSS sends commit/abort to all
processes. When a process receives the commit
request and it has taken the tentative checkpoint then
it converts its tentative checkpoint into permanent one
and discards its éarlier permanent checkpoint. When a
process receives the commit request, and it has not
received the tentative checkpoint request, then it
discards its induced checkpoint, if any. '

3.4.2 Allprocess Chééfl(pointing

For collecting all process global checkpoint, initiator
sends request to all processes to checkpoint. In case of
conflict for initiation, initiation with maximum
address will continue. On receiving the checkpoint
request, a process takes the tentative checkpoint if it
has not taken the tentative checkpoint to this
initiation. A process, after taking the checkpoint or
knowing its inability to take the checkpoint, informs its
local MSS.

When a pragess sends a computation message, it
appends its cci (current Cl) and c_state with the
message. When a process, say P, receives a
‘computation message from some other process, say P,
P, takes the tentative checkpoint before processing the
message if the condition ((m.cci=nci) &&
(Pic_state==0) && (m.c_state==1)) is true.
Otherwise, itsimply processes the message.

When an MSS learns that all of its processes have taken
the tentative checkpoint successfully or at least one of
its processes has failed to take the tentative checkpoint
successfully, it sends the response message to the
initiator MSS. Finally, initiator sends commit/abort to
all.

3.4.3 Handling Node Mobility and Disconnections

g
An MH may be disconnected from the network for an
arbitrary period of time. The Checkpointing algorithm

may generate a request for the disconnected MH to
take a checkpoint. Delaying a response may
significantly increase the completion time of the
checkpointing algorithm. On reconnection, the MH
may receive buffered messages which are delayed for
quite long time, violating the precondition of the
protocol that no message should be delayed so that it
reaches destination after seven Cls. We propose the
following solution to deal with arbitrary
disconnections.

When an MH, say MH, disconnects from an MSS, say
MSS,, It stores its owri checkpoint, say
disconnect_ckpti, and other support information e.g.
ddv], send, cci etc., at MSS,. During disconnection
period, MSS, acts on behalf of MH, as follows. If
checkpointing process is initiated and MH, is in
minimum set, then MSS, converts its disconnected
checkpoint into permanent one. On global
checkpoint commit, MSS, also updates MHi's data
structures e.g. send, ddv{], cci etc., as if, it is a normal
process. On the. receipt of messages for MH,, MSS,
does not update MHi's ddv]] but maintains two
message queues, say old_m_gand new_m_g, to store
the messages as described below.

On the receipt of amessage m for MH;:
ifi(m.cci== cci, v {m.cci= =nci) v (matd[j, loc
(m.ccil]==1))

add (m, new_m_q); // keep the message in new_m_g
else

add(m, old_m_q);
Onall process checkpoint commit:

Mergenew_m_q to old_m_g;

Free(new_m_q);

When MH, enters in the cell of MSS,, it is connected to
the MSS,, if g_chkpt is reset. Otherwise, it waits for
g_chkpt to be reset. Before connection, MSS; collects
its support information from MSS. MH, updates its
own data structures e.g. pci, cci, nci, send, ddv[] etc.
on the basis of this support information. It processes _
the messages in old_m_q, without updating ddv{]. It
processes the messages in néw_m_q, updating ddv{].

It may be desired that the messages may be delivered

to the MH in the order in which they were actually
received by the MSS. We can use receive sequence
number and store it with the received message. We
can easily process the messages from the both queues

BVCOE's MET journal

-~

such that they are delivered in the increasing order of
receive sequence number. After this, MHi starts
normal functioning. MSSi discards disconnect_ckpti,
if itis .committed or MHi connects to some MSS.
The message for disconnected MH should not be
delayed so that it reaches the MSS, which maintains its
‘support information, after 7Cls. Thus, an MH can
remain disconnected for arbitrary..period of time
without affecting checkpointing activity.

3.5 Formal Outline of the minimum process
Algorithm:
@ Actions Taken when P, selids a computation
message to P;:
. send(P, m, ccj,C_state); send, =1;
() Algorithm Executed at the initiator MSS:

1. If the checkpoint initiator process runs on
MH, it sends the checkpoint initiation request
toits local MSS.

2. if (g_chkpt) {discard the checkpoint initiation
request; inform initiator; exit;}

/I some global checkpoint recording is
already goingon

3. MSSin sends request to all MSSs for ddv
vectors; setg_chkpt;

/Mssin is the identity of initiator MSS
4. Waituntil all ddv vectors are received;

5. On the receipt of request to send ddv vectors
from some other process, say Pk:

If(Pk.ID > P..ID) {discard the own checkpoint
initiation; exit;}
else {ignore the request of P, ;}

6. Onthereceiptofall ddv vectors:
Compute edv]] / compute minimum set of
processes

7. Send take_checkpoint(Pin, MéSin, cciin,
edv[]) requiestto all MSSs; '
/I MSSin “is the local MSS of the checkpoint
initiator process

8. Initiator process takes the tentative
checkpoint; updates data structures e.g.
c_state, cci, ncietc.;

9. Settimefi ;

10. waitforresponse

11. Onreceiving Response (Pin, MSSin, MSSs,
Efl, new_d,s_bit) or attimerout {timeri}:
// MSSs is the identity of MSS sending the

response
(i) If((timeri) (s_bit))
{send message abort(Pin,MSSin,edv(]) toall
MSSs; exit;}
(ii) for(k=1;k<=n;k++)
if(E(k]= =1)RIK] = 1;
/R[K]=1 implies checkpoint response from
the process Pk has been received
(iii) fortk=1; k< =n; k+ +)
ifnew_d[k]= =1)edvlk] =1;
/I new processes are added to minimum set
12. fork=1;k< =n;k+ +)
if (R[] = edv{j}) goto step 10;
/IR[j)!= edvj} implies response from all relevant

processes has notarrived yet.
13. Send message commit (Pin, MSSin,_edv])) to

MSSs;

{(c) Actions taken when Pi receives a message from

Pj:

if(m.cci! =ncii)
receive (m);

elseif ((c_state= =0) (m. c ‘state = =1) (sendi)
{takethe induced checkpoint;
update cci,nci, c_state, send etc. ;

elseif (c_state= =0) (m.c_state==1) (isendi))
update cci, nci, c_state, etc. ;

else
receive(m);

() Algorithm Executed at any MSS, say MSSp

1. Upon receiving a message to send ddv[] from
the initiator MSS:
send own ddv[]; set g_chkpt;
send ddv[] foreMHs and disconnected MHs in
its cell;

2. Upon receiving message take_checkpoint
(Pin, MSSin , cciin,edv[]) from initiator MSSi:
()for =1;j< =n;j+ +)

if (D[j] = =1) (edv{j]= = 1XE[j] = =0))
{send the checkpoint request to Pj;
E[]] = 1; Set checkpointing;

} o
(i) Lf (lcheckpointing) {discard the
éheckpomt request; gotostep4;}
(ifi) reset s_bit;
3. (Mfor(j=1;j<=n;j++)v

if (Efj]==

fork=1;k<=n;k++)

if (ddvjlkl= =1 edvik]==0) new_d[k] =1;

//Whether any process is dependent upon
relevant process alid not on initiator
(iffortk=1; k< =n;k+ +)

BVCbE's MET Journal

47

if (new_d[k]= =1)

send include_relevant(MSSin, Pin, new_d[],
MSSs) requestto MSSs supporting

the processes in new_d[l;

4. Continue Computation
5 (i). Upon receiving include_relevant(MSSin,
Pin, new_dfl, MSSs):
fork=1;k<=h;k+ +)n_dk]=0;
fortk=1;k<=n; k+ +)
{ if ((m.new_d[k]==1)
(EK]==0)
{EK =1;
set checkpointing;
Send checkpointrequestto Pk;
For (kk=1; kk< =n; kk+ +)
{if((ddvk[kk]==1)(edv[kk] = =0))
n_dlkk]=1;}
}

(Dlk]==1)

forlk=1;k<=n;k+ +)
if(n_dikl= =1)
{send include_relevant(MSSin, Pin,
n_d[],MSSs) request to MSSs suppomng
the processes inn_d[J;
fork=1;k< =nk+ +)
if (n_d[k] = = 1) new_d[k]=1;
5. (ii) Upon receiving response messages from
any process say Pj to which it sent
checkpoint request message:

(i) setEEfj]=1;

(ii) If some process in the cell has failed to —

take the tentative checkpoint successfully
thensets_bit;

If (s_bit) v(V; (EE[j]1=E[])) //some relevant
process has failed to checkpointorall
[lrelevant processes in the cell took
checkpoints
{send the message Response(Pin , MSSin,
MSSs, ETl, s_bit, new_d[]) to initiator MSS;}
(ii) gotostep4;
7. Upon receiving abort(Pin, MSSin, edv]]) or
commit { Pin,MSSin)
request from initiator MSS:
send the request to all processes inits cell;
(c) 4. Algorithm Executed at any process P;:
(a) Upon receiving a checkpoint request:
(i) if (induced) convert induced checkpoint into
tentative one;
= else Take a tentative checkpoint;
(i) Send the responseto local MSS;
(@) Onreceiving commit:
If (tentative) {
Make_permanent (tentative checkpomt)

Discard (old permanent checkpoint); }
else If (induced) {
Discard induced checkpomt }
elseif (c_state==0)
{update cci, nci, pci;)
(b) Onreceiving abort:
If ((tentative) (induced)) '
{discard the checkpoint of current initiation;
undo the updating of cci, nci, pci; }
else if (c_state= = 1) undo the updating of cci,nci
etc.;

3.7 Optimizations

Following optimizations can be applied to the
proposed checkpointing protocol:

{i) Transferring the checkpoint of an MH to its local
MSS, may have a large overhead in terms of battery
consumption and channel utilization. To reduce such
an overhead, an incremental checkpointing technique
could be used. Only the information, which changed
since last checkpoint, is transferred to MSS. The MSS
can reconstruct the checkpoint of the process by
updating its last checkpoint with the information sent
by the MH. If, due to a cell switch, the last checkpoint
is not present in the current MSS, it has to be
transferred from another MSS. .

(i) If an MH, on disconnection, finds that it has not

sent any message since last committed' checkpoint, it
may skip to take disconnect checkpoint, and its
previous committed checkpoint will be consistent
with the new global checkpoint collected during
disconnection period. Similarly, after joining another
cell, checkpointing process .is initiated, and the MH
finds that it has not sent any message since last
disconnected checkpoint, then its disconnected
checkpoint can be converted into tentative
checkpoint.

5. Cdmparisons With Existing Schemes

Acharya and Badrinath [1] gave a first checkpointing
protocol for mobile systems, which is gquasi-
synchronous approach. In this approach, aMH takes
a local checkpoint whenever a message receipt is
preceded by message sent at that MH. This algorithm
has no control over checkpointing activity on MHs.
The number of local checkpoints may be equal to half
of the number of computation messages, which may
degrade the system performance. In our scheme, there
is a strict control on checkpointing activity.

Koo and Toueg [11] proposed a minimum process
coordinated checkpointing scheme for distributed
systems.

48

BVCOE's MET Journal

-

It requires processes to be blocked during
checkpointing. Checkpointing includes the time to
find the minimum relevant processes and to save the
state of processes on stable storage, which may be
fong. Therefore, this blocking algorithm may
significantly reduce the performance of the system.
Our protocol is non-blocking.

In Chandy-Lamport, non-blocking coordinated
checkpointing algorithm, all processes are required to
take checkpoints [6] and its message complexity. is
O(n2). In our scheme, the message complexity is O(n).

Most of the checkpointing schemes in literature are
either minimum pracess or non-blocking for MDCSs.
Prakash et al. proposed a minimum process .non-
blocking chegkpointing scheme for MDCSs [15]. But
this protocol* may lead to inconsistencies in some
situations [4],[5]. Cao and Singhal [5], proposed
minimum process and non-blocking cheéckpointing
schemes-for MDCSs by introducing the concept of
mutable checkpoints. In their protocol, only minimum
number. of processes takes permanent checkpoints,
but the actual number of processes that take

_ C,,' and SmghaI;M

checkpoints is more than the minimum required. In
the proposed scheme we have minimized the useless
induced checkpoints by crashing the height of the
checkpointing tree and by reducmg the yncertainty
period of processes. In place of integer csn, we have
appended three bits Cl with every message.

6. Conclusions

In this paper, we have presented a non-intrusive
checkpointing protocol, which is a hybrid of
minimum process and all process schemes. An
attempt has been made to reduce the period during
which the processes may be forced to take additional
checkpoints Zsue to' non-intrusiveness. These
checkpoints may or may not be requnred finally. But

“this decision can be taken only after the global

collection of the checkpoint completes. Thus, such
checkpoints may be useless but are unavoidable. By

" reducing the time, for which induced checkpoints are

taken, we have reduced the number of such useless
checkpoints. We have also reduced the information,

to-be piggybacked with every message, from an
. integerto three bits:

infing. Algonthm‘ for _Mobule_Compuun 'Systems mecew 'gs !

6 Ch_qndy K M and Lamport L "Distributed Snapshots Determmm

stems, "4 ACM Transactlon on Computing

élary |. M., Mo

: :apshots &roceedmgé bfmdme,é_zath-’lntemat:onal Symposmm on*ault-ToIéranthomputing, pp: 208-'_

ion of CnnSlstent

BVCOE's MET Journal

49

*Dept. of CSE. National Institute of 7 echnoiogy, Hamirpur (HP), India.
**Dept of Computer Sc & Application?. K.U. Kurukshetra (HRY),
India lalitdecS yahoo.com; plc223475@yahoo.com :

50

BVCOE's MET journal

