Programming a_Clustered System

Virendra V. Bagade*, Savita Kadam**, Sonali Kadam*** and Pallavi Rege****

Abstract
The Message Passing Interface (MPI) has been a great boon to the development of parallel applications,

since it can be usednot just on asingle vendor's system, but also as abridging tool to allow multiple systems (0
be tied together fo ensure that the integrity of the programming model is maintained. This Paper presents MPI
based implementation of parallel programming that is fundamentally different from sequential code. Parallel
programming is centered on finding ways 10 decompose problems in two basic ways: (i) functional
decomposition i.e. mulliple program multiple data oriented programming (MPMD) and (ii) Daia
decomposition i.e. single program multiple data oriented programming (SPMD). Programs can be
parallelized in order to run faster. In this paper 80% of a program is parallelized and computational time is
reduced to 40% of the time required for the sequential program. Cdmparisons with existing methods are
drawn and the advantages and disadvantages of each are examined. Several examples are illustrated with
resulting outputs. This paper works out the best technique in terms of processing power and complexity.

Index Terms: Feature based parallel model, Computational time, Sequential and Parallel programs.

1. Introduction ' questions. Due to its networking background,

‘ Unix has been the preferred platform for network
Towards the start of the computer revolution a operating systems. However, Microsoft Windows
typical network topology was to have one main, is now becoming a real competitor to Unix. This is
powerful computer which processes all the due to its multitasking environment, stability and
information. The “dumb terminal” was basically huge popularity. MP1 environments have been
used as a window to the main frame. These days, developed so that Windows-based networks can
each workstation processes its own information make use of the benefits due to MPL

and_the network is simply a medium by which
information is passed between computers.
Message Processing Interface (MPT) is a tool that
brings all the computers on a network together
under one umbrella and effectively turns many
workstations in to one virtual high performance
parallel processing computer. The Message
Passing Interface Forum sets the standard for MPI.
It is a library of subroutines/functions which can
be used for large problems that demand high
computational time (access to more memory) and
data that is spread across different data sets. It can
also be used for distributed memory machines
such as clusters of Unix work stations, clusters of

NT/Linux PCsor IBM pSeries.-
As the importance of paralle] processing and its

supporting environments become increasingly
realized, some questions are raised concerning its
performance, reliability, stability and user-
friendliness. This paper attempts to answer these

The main goal of parallel programming is to
utilize all the processors and minimize the elapsed
time of the programs. Using the current software
technology, there is no software environment or
layer that absorbs the difference in the architecture
of parallel computers and provides a single
programming model. So, one may have {0 adopt
different programming models for different
architectures in order to balance their performance
and the effort required for programming;

Camputer | Camputer 2

L
Fig.1: Basic Process of Message Passing
Interface.

BUCOE'S MET Journal 62

The basic process view of MPICH is shown in
Figurel. Remote processes communicate via TCP.
Processes sharing memory use Windows shared
memory Semantics.

2 Models of Parallel Programming

2.1 SMP Based Models

Multi-threaded programs are the best fit with
Symmetric Multiprocessor (SMP) Architecture
because threads that belong to a process share the
available resources. One can either write a multi-
thread program using the POSIX threads library
(pthreads) or let the compiler generate multithread
executables. Generally, the former option places
the burden on the programmer, but when done
well, it provides good performance because one
has complete control over how the programé
behave. On the other hand, if the latter option is
used, the compiler automatically parallelizes
certain types of DO loops, or else, one must add
some directives to tell the compiler what is to be
done by it. However, one has less control over the
behaviorofthreads[1].

Single thrend Multi-thread

N

Pr
P2
] S2 01
P3

Thread

= L

e TR,

nint
Shared addness space

P4

S2

V

L1

Process

Process

Figure 2: The fork-join model

In Figure 2, the single-thread program processes
S1 through S2, where S1 and S2 are inherently
sequential parts and Pl through P4 can be
processed in parallel. The multi-thread program
proceeds in the fork-join model. Tt first processes
S1, and then the first thread forks three threads.
Here, the term fork is used to imply the creation of

a thread, not the creation of a process. The four
threads process P! through P4 in parallel, and
when finished they are joined to the first thread.
Since all the threads belong to a single process,
they share the same address space and it is easy to
reference data that other threads have updated.
There is some overhead in forking and joining
threads.

2.2 MPP Based on Uniprocessor Nodes

If the address space is not shared among nodes,
parallel processes have to transmit data over an
intercon’necting-network in order to access data
that other processes have updated. High
Performance Fortran (HPF) may do the job of data
Transmission for the user, but it does not have the
flexibility that hand-coded message-passing
programs have, since the class of problems that
HPF reso Ives‘is'.lim ited.

Serial Mesage-passing
»1° .
O MR E
l pl l u -‘:! .w:‘ u " n
Y
- ! .
n
b i
2 i1 1L 1
L) [T S Phara2 Mimase t
s Noki i Nod2 Nod Node 4
o H

Figure 3: Message-Passing

Figure 3 illustrates how a message-passing
program runs. One process runs on each node and
the processes communicate with each other during
the execution of the parallelizable part, P1-P4. The
figure shows links between processes on the
adjacent nodes only, but each process
communicates with all the other processes in
general. Due to the communication overhead,
workload unbalance, and synchronization, time
spent for recessing each of P1- P4 is generally
longer in the message-passing program than in the
serial program. All processes in the message-
passing program are bound to S1 and S2. Image
gets set to something appropriate. In the forward
mapping case, some pixels in the destination

63

BVCOE'S MET Journal

——————

might not get painted, and would have to be
interpolated. One can calculate the image
deformation as a reverse mapping.

2.3 Comparison of SPMD and MPMD

When one runs muitiple processes with message
passing, there are further categorizations
regarding how many different programs are
cooperating in parallel execution. In the Single
Program Multiple Data (SPMD) model, there is
only one program and each process uses the same
executable working on different sets of data
(Figure3 (a)). On the other hand, the Multiple
Programs Multiple Data (MPMD) model uses
different programs for different processes, but the
processes collaborate to solve the same problem.

BT TR O] AT Y
MU IR e s 1ML E
RAERAEL SN VSRR SRS
griolig o T il 018
Neode) Node2 Jode 3 Noke! Nuwkel Nod) Node| Node2 Noded
(:ISPMD BYMIMD : Master Worker Y MIPMD : Coupled Analysis

(n) (b) (b}

Fig.4 SPMD and MPMD

Figure 4(b) shows the master/worker style of the
MPMD model, whére a.out is the master program,
~ which dispatches jobs to the worker program,
b.out. There are several workers serving a single
master. In the coupled analysis (Figure 4(c)), there
are several programs (a.out, b.out, and c.out), and
each program does a different task, such as
structural analysis, fluid analysis, and thermal
analysis. Most of the times, they work
independently, but once in a while, they exchange
datato proceed to the next time step.

2.4 Why message passing is necessary
for parallelization

Sequential program that reads data from a file,
does some computation on the data, and writes the
data to a file. In figure 6, white circlgs, squares,
and triangles indicate the initial values of the
elements; and black objects indicate the values

after they are processed. In the SPMD model, all
the processes execute the same program. To
distinguish between processes, each process hasa
unique integer called rank. One can let the
processes behave differently by using the value of
rank. Hereafter, the process whose rank is 7 is
referred to as processr.

Figure 6. Parallel Program
In figure 6, all the processes read the array in Step

I and get their own rank in Step 2. In Steps 3 and 4,
each process determines which part of the array it
is in charge of, and it processes that part. After all
the processes have finished in Step 4, none of the
processes have all of the data, which is an
undesirable side effect of parallelization. It is the
role of message passing to consolidate the
processes separated by the parallelization. Step 5

gathers all the data to a process and that process

writes the data to the output file. To summarize: .

The purpose of parallelization is to reduce the time
spent for computation. Ideally, the parallel
program is p times faster than the sequential
program, where p is the number of processes
involved in the parallel execution, but this is not
alwaysachievable.

Message-passing is the tool to consolidate what
parallelization has separated. It should not be
regarded as the parallelization itself.

2.5 MPI Program Structure

e Handles
e MPICommunicator —
s MPI_Comm_world

o Headerfiles

BUCOE'S MET Journal

64

ey

e MPI function format

e Initializing MPI ,

e Communicator Size

¢ Process Rank

¢ Exiting MP1

Handles:

® MPIcontrols its own internal data structures

e MPIreleases “handles” to allow programmers
to referto these

¢ Chandles are of defined typedefs
MPI Communicator

® Programmer view: group of processes that are
allowed to communicate with each other

e All MPI communication
communicator argument

calls have a

. MPI_COMM_WORLD Communicator

Figure 7.

Header Files

® MPI constants and handles are defined here in
Clanguage : #include <mpi.h>

MPI Function Format

error = MPI_Xxxxx(parameter,...);
MPI_Xxxxx(parameter,.,);

Initializing MP1

® must be the first routine called (only once) int
MPL_Init(int *argc, char ***argv)
Communicator Size

® How many processes are contained within a
Communicator? —

‘MPI_Comm_size (M PI_Comm comm, int *size)

Process Rank

® Process ID number within the communicator
Starts with zero and goes to (n-1) where n is the
number of processes requested

® Used to identify the source and destination of
messages

® Also used to allow different processes to
execute different code simultaneously

MPI_Comm_rank(MPI_Comm comim, int *rank)

Exiting MPI

o Mustbé called last by “all” processes
MPI_Finalize ()

Sample program

#include <mpi.h>

void main(intargc, char *argv[])
{int rank, size;

MPL_Init(&arge, &argv);

MPI_Comm_rank(MPI_COMM_WORLD,
&rank);

MPI_Comm_size(MPl_COMM_WORLD,
&size);

/*...Yourcode here ... */

MPI_Finalize ();}

2.6 Parallelization and Computational

Time

One can parallelize a program in order to run it
faster. How much faster will the parallel program
run? Suppose that in terms of running time, a
fraction P of a program can be parallelized and
that the remaining /-P cannot be parallelized. In’
the ideal situation, if one executes the program
using processors, the parallel running time will be
(1 p + p/n) of the serial running time. This is a
direct consequence of Amdahl's law applied to an
ideal case of parallel execution. For example, if
80% of a program can be parallelized and there are
four processors, the parallel running time will be
10.8+ 0.8 / 4 = 0.4, that is, 40% of the serial

65

BVCOE'S MET Journal

running time as shown in Figure 8.

e

process 2 %m

cannot be parallelized

can be parallelized

Figure 8.

Since 20% of the program cannot be parallelized,
one gets only 2.5 times speed-up using the four
processors. For this program, the parallel running
time is never shorter than 20% of the serial
" running time (five times speed-up) even if

infinitely many processors are used. According to
Amdahl's law, it is important to identify the -

fraction of a program that can be parallelized.
When a parallel program is run, there is a
communication overhead and a workload
imbalance among processes in general. Therefore,
the running time will be as Figure 9 shows.

20 80

Serial

Parallel .2_0.. 2
process 1

process 2 cannot be parailelized

=\
j%&\\w E % communication overhead

L nd

k Load unbalance

process 3 can be parallelized

process 4

Fig.9 Parallel Speed-Up: An Actual Case

What can be done to balance the workload of
processes? Several measures can be taken
according to the nature of the program. Changing
‘the distribution of matrices from block
distribution to cyclic distribution is one of them.
The communication time is expressed as follows:
The latency is the sum of sender overhead,
receiver overhead, and time of flight, which is the
time for the first bit of the message to arrive at the

receiver. Using this formula, the effective
bandwidth is calculated as follows:

The effective bandwidth approaches the network
bandwidth when the message size grows towards
infinity. It is clear that the larger the message is, the
more efficient the communication becomes.

3. Conclusion and Results

In terms of performance, MPICH is clearly the
most efficient. It uses optimal network bandwidth
and establ{shes connections between nodes in the
least amount of time. Users who are new to MPI
should have no problem with this interface,
provided the environment has been correctly
installed. Overall, this environment should appeal
to the expert. It offers excellent performance and
accommodates scalability of the network with the
simple to use, GUI Resultant out put for matrix

For Parallel Program
Here is the result matrix=[1000][1000]
Wall clock time = 45.94387, Finished writing log

file.

For Sequential Program

Here is the result matrix=[1000][1000]

Wall clock time = 33.10156, Finished writing log

file.
Calculate the delay in the Network by sending and

receiving only rows & column without calculation
Here is the result matrix=[1000][1000]
Wall clock time = 26.4293, Finished writing log

file
Computational time for Parallel Program is Total

time-Network delay <Sequential Time
45.94 - 26.421=19.52 i.e. < Sequential program

time

REFERENCES

[1] Message Passing Interface Standard. [Online]
Availablefrom:http://www.unix.mcs.anl.gov/mpi
/mpich [Accessed: April 2000] .

[2] Microsoft Windows NT server White Paper.
http:/www.microsoft.com/ ntserver/nts/exec/defa
ult.asp [Accessed: Nov '99]

[3]MPICH from Argonne,

66

BUCOE'S MET Journal

http://www.mcs.anl.gov/mpi/mpich

(4] Microsoft: Windows NT server. White Paper:
http://www.m icrosoft.com/ntserver/nts/exec/default.asp
[SINPAC REU Program Labs and Tutorials, -
http://www.npac syr.edu/R EU/reu96/L abs/MPl/mpilab_htm!

*Sinhagad Engineering College, Lonavala
** Computronics, Pune
***Bharati Vidyapeeth College of Engineering/ for Women, Pune-43
**** VIT College of Engineering, Pune

67 BVCOE'S MET Journal

