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Abstract

The aim of image compression is to reduce the amount of data needed to accurately represent an
image such that this image can be economically transmitted and received. Currently, standards like
JPEG MPEG etc. are being employed for compression of images. One of the recent techniques
being studied and developed is-the arithmetic compression of images. In comparison to the well
known Huffman coding algorithm, which is used by most of the existing standards, arithmetic
compression overcomes the constraint that a symbol has to be encoded by awhole number of bits.
Also, the compression ratio is better than that of Huffman.” Huffman coding has another
disadvantage that it requires the probabilities of the symbols in powers of 2.In this paper we have
mentioned the various problems one can come across while ir/p’Ileme‘nting this algorithm as well as
given solutions for the same. We have implemented the above algorithm to monochrome images. The
results have been shown for a few standard monochrome images. This technique can be efficiently
appliedto gray images and it can be extended to color images also.
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1. Introduction 1.1 Lossless Compression

Image compression addresses the problem of Incertain applications like archieval of medical
reducing the amount of data required to or business documents, satellite image
represent a digital image. The underlying basis  processing, digital radiography etc. error free
of reduction process is the removal of redundant compression is of prime importance. This
data. Currently, image compression Iis technique is composed of two independent
recognized as an enabling technology. With ~ operations:
image sensors of high spatial resolutions that
are being used today, the image sizes can extend
to several megabytes. Inspite of constraints on the image.
the bandwidth anfl cfhannel capacity spec-i‘ﬁ.ed b) Coding the representation.
by Shannon's limit, compression permits

. trarismission and archieving of such large image The coding methods that are loss-less in nature
files. include:

a) Devising an alternative representation of

Taking into consideration the relevance of i) Variable length coding:
compression and the phenomenal changes in a) Huffman )
technology in this direction, we have chosen to ) .

explore one such coming up teckiique called D) Arithmetic

“arithmetic compression”. ii) LZW coding
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1.2 Lossy Compression

Lossy encoding is based on the concept of
compromising the accuracy of the reconstructed
~ image in exchange for increased compression.
If the resulting distortion can be tolerated, the
compression ratio can be significant. Such
techniques can be applied to images on the
internet, in video compression and multimedia
applications. The compression methods that are
lossy in nature include:

1) Lossy predictive coding

i1) Transform coding:
a) Discrete Cosine Transform (DCT)
b) Discrete Fourier Transform (DFT)
c) Walsh Hadamard Transform

iii) Wavelet Coding

2. Arithmetic Coding

Arithmetic coding overcomes the constraint
that the symbol has to be coded by a whole
number of bits. This leads to higher efficiency
and a better compression ratio in general.
“Indeed Arithmetic Coding can be proven to

almost reach the best compression ratio possible,

which is bounded by the entropy of the data
being encoded. During encoding the algorithm
generates one code for the whole stream, this is
done fully sequential manner, symbol after
* symbol.Arithmetic coding is a very efficient
principle for Lossless data encoding, which
satisfies all the requirements of what people
understand of a modern compression algorithm.
Finite precision integer arithmetic suffices for
all calculations. These and other properties
make it straightforward to derive hardware-
based solutions. The decoder uses almost the
same source code as the encoder; which also
makes the implementation straightforward.

2.1 Coding of images using Arithmetic
Compression

Our goal is to compress data, which might either

be stored on a computer readable media or be
sent over some form of stream. This data could
represent anything, reaching from simple text
upto graphics, binary executable programs etc.
However, we do not distinguish here between all
those data types. We simply see them all as
binary input. A group of such input bits is what
we will refer to as symbol. When looking at a
message sequence, one can calculate a distinct
probability of each symbol to occur in this
sequence. We can directly conclude that the
probability of every symbol is always contained
in the interval [0,1) for any symbol, whereas the
sum over all such.probabilities is always 1. This
interval is open-ended, because it would make
no sense to encode a constant sequence holding
only a symbol of probability 1, simply because
in that case the full content of the sequence
would have been known beforehand already.

2.2 Encoder and Decoder

An algorithm which encodes the‘sequence is
called an ENCODER. The appropriate
algorithm decoding the sequence again is called
a DECODER. An encoder could be any
algorithm transforming the input in such a way
“that there is a decoder to reproduce the raw input
data. We are only going to consider codes that
are able to reproduce the input data up to the last
symbol.

2.2.1 Encoding to Real Numbers

All probabilities of the symbols fall into the
range [0,1) while their sum equals 1 in every
case. This interval contains infinite amount of
real numbers, so it is possible to encode every
possible sequence to a number in [0,1). One
partitions the interval according to the
probability of the symbols. By iterating this step
for each symbol in the message, one refines the
interval to a unique result that represents the
message. Any number in this interval would be
the valid code. '

2.2.2 Upperand Lower bounds

Henceforth we call the upper and lower bounds
of the entire current interval high and low. The
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bounds of the sub intervals are calculated from
the cumulative probabilities:

k
Kla) = Pula) .

The values of high and low change during the
encoding process whereas the cumulative
probabilities remain constant.

2.2.3 Encoding

The first step in encoding is the initialization of
the interval I = (low, high) by low = 0 and
high = 1. When the first symbol, say s1 is read,
the interval / can be resized to a new interval I
according to the symbol. The boundaries of I
are also called low and high. We choose I' to
equal the boundaries of s1 in the model.
However, how are these boundaries calculated?
Let s1 = g, be the k" symbol of the alphabet.

Then the lower bound is

Je-L
low:=" Pu(a,) = K(0-1)
t=1

The new interval I' is set to {low, high). The
most relevant aspect of this method is that the
- sub-interval I' becomes larger for. more
probable symbols s1. The larger the interval the
lower the number of fractional places which
results in shorter code words. All following
numbers generated by the next iterations will be

located in the interval I' since we use it as base .

interval as we did used [0,1) before. We proceed
with the second symbol s2. However, now we
have the problem that our model M describes a
partition 7 of the interval [0,1), not of I which
was calculated in the previous step. We have to
scale and shift the boundaries to match the new
interval. Scaling is accomplished by a
multiplication with high-low, the length of the
interval. Shifting is performed by adding low.
This results in the equation

11
low' = low+ Pia,)- (high - low) = low+K(ay.)-(high-low) ;  (3)
=l

high'

I
low +Y Poday)- high - low) = low+ Kia,)- (high - low). {4
=t

2.2.4 Decoding

To decode a sequence, one somewhat have to
apply the encoder backwards. The value ¥ =
Code (S) is given and we have to restore the
original sequence. We assume that the message
length is known and equals /. In the first iteration
we compare ¥ with each interval = [K (a,-1), K
(a)) to find the one that contains V. It
corresponds to the first symbol of the sequence,

s1. To compute the next symbol, we have to

modify the probability partition in the same way
we did while encoding:

low' = low +K{ay.\)-(high - low)
high' = low +K(a)-(high - low) ,

where i has to comply
low<V < high

Here, a, is the next symbol in the encoded
sequencé. This time, the start case is again a
special case of the general formula. The iteration
is very similar to the encoder, so from its
implementation should arise no further
problems. |

2.2.5 Encoding As a Sequence of bits

To implement arithmetic coding effectively, we
have to make certain restrictions. There are
infinite real numbers, so the pure integer
implementations are way faster on simple
processors as found in fax machines (which
actually use arithmetic coding in the G3
protocol). The output when encoded as a
sequence of bits is a non-ambiguous sequence of
bits that can be stored or transmitted.

BVCOE'S JMET

45




E

2.2.5.1 Encoding

The encoder consists of a function and static
variables that store the current state:

« mLow stores the current lower bound.
Itisinitialized with 0.

- mHigh stores the current upper bound.
It is initialized with Ox7FFFFFFF, the
maximum value that fitsin 31 bits.

mStep stores a step size that is
introduced later. It is not necessarily
static in the encoder, but the decoder
depends on this property.

2.2.5.2 Decoding

The task of the decoder is to follow the steps of
the encoder one by one. Hence we have to
determine the first symbol and update the
bounds accordingly. This divides the decoder
functionality into two functions:

First determines the interval that contains the
symbol. This is accomplished by

calculating the code value of the symbol:
mStep=( mHigh-mLow +1)/total;
value =(mBuffer- mLow )/mStep;

mBuffer variable that contains the
encoded sequence.

The model can use the return value to determine
the encoded symbol by comparing it to the
cumulative count intervals. As soon as the
proper interval is found, the boundaries can be
updated like they were during encoding:

mHigh=mLow+mStep * high_count -1 ;
mLow=mLow +mStep * low_count;
3. Scaling in Limited Ranges

When we use the presented methods to encode

several symbols, a new problem arises: mLow
and mHigh converge more and more and so
further encoding will be impossible as soon as
the two values coincide.

3.1 ElandE2 Scaling

As soon as mLow and mHigh lie in the same
half of the range of numbers , it is guaranteed
that they will never leave this range again since
the following symbols will shrink the interval.
Therefore the information about the half is
irrelevant for the following steps and we can
already store it and remove it from consideration.
Given the presented implementation, if hex
values are used the most significant bits (MSB)
of mLow and mHigh are equal in this case. 0
corresponds to the lower half while 1 represents
the upper. As soon as the MSBs match, we can
store them in the output sequence and shift them
out. This is called E1- respective £2-scaling.

3.2 E3Scaling

Though E1 and E2 scaling are a step in the right
direction, they are not sufficient on their own.
They won't work when mLow and mHigh
converge to the center of the interval: Both stay
in their halves, but the interval soon becomestoo
small. They differ from each other, but further
encoding is impossible. This is where E3 scaling
comes into play: As soon as mLow leaves the

lowest quarter (maximum value of the first

quarter: g FirstQuarter) and mHigh the
highest (fourth) qﬁarter (maximum value of the
third quarter: g_ThirdQuarter), the total fange
is less than half of the original range and it is
guaranteed that this won't change because of the
ongoing shrinking. It is not immediately
determinable which half will contain the result,
but as soon as the next E1 or E2 scaling is
possible, one knows the values that one could
have stored earlier if one were able to foresee
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this. This might sound strange, but it's the way
E3 scaling works.

4. Results

Given below are some of the results obtained by
applying arithmetic compression technique to
certain monochrome images. Similarly this
technique can also be implemented to color
images.

FLOWERS.BMP

ORIGINAL IMAGE

ENTROPY = 0.709 BPS
COMPRESSION RATIO = 0.709 BPP

BLOOD.BMP
w ~ L s
XX o O
B O ¢ ) o ¢
ORIGINAL MAGE RECOVERED IMAGE

ENTROPY = 0.387 BPS
COMPRESSION RATIO= 0.887 BPP

MONA.BMP

-
ORIGINAL IMAGE

ENTROPY = 0.910 BPS
COMPRESSION RATIO = 0.910 BPP

5. Applications

e Medical Images: Normally medical
images like X-Rays, CT scans etc. have
a region of interest and a boundary
region. The region of interest contains
critical information and is therefore
coded using a lossless technique like
Arithmetic Coding, while the boundary
region can be coded using a lossy

technique

Fax Protocols: Nowadays there are a lot
of hidden applications of Arithmetic
Coding, such as hardware-based codecs
as for instance the fax protocols G3 and
G4. This kind of application make
Arithmetic coding maximally efficient
by the use of a small alpha bet with an
unevenly distributed probability.

» Multimedia: In order to compress a
large number of pictures and other data,
which require a lossless compression
like this, isused.

» Printing and Scanning: A huge data is
to be stored everyday for newspapers
and hence requires an efficient
compression algorithm.

6. Conclusion

With Arithmetic Coding, we have described a
coding method, which is suitable for lossless
data compression. We have seen, that Arithmetic
Coding can work sequentially, encoding symbol
per symbol- and thus is able to send already
encoded parts of a message before it is fully
known.

-Arithmetic Coding has a better efficiency than

Huffman Coding. Also, Huffman coding is
optimum only among the coding schemes which
assign a fixed integer number of bits to each
symbol. We know for sure that the Shannon
theorem guarantees that compression below the
entropy of the source is impossible. Indeed

- Arithmetic Coding can be proven to almost

reach the best compression ratio possible, which
is bounded by the entropy of the data being
encoded. The technique can be applied to
monochrome and gray images satisfactorily.
Color images also can be coded.

LS
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Theoretical Investigation into Effect of Mesh Stiffness and Bearing
Stiffness on'Modal Frequencies of Geared Shaft

S. B. Wadkar*, Dr. S. R. Kajale**, T. R. Trivedi***

Abstract

The variation in stiffness of meshing teeth, as-the number of gear teeth pair in contact changes,

causes instabilities and vibrations in géared systems. It is a well established fact that bearing
properties have a-strong influence on shaft dynamics. However, a review of literature reveals the

effect of bearing properties on modal frequencies is not sufficiently investigated. Most of the

researchers presented gear dynamics models restricting to torsional deflections only, however they
did not report the z’nvestigations considering lateral deflections. The above investigations may not
be valid for a typical overhung type geared system rotating/fzt a high speed. This paper presents a
geared shaft system as an equivalent rotor system connected with spring. The equation of motion is
writlen, and natural frequencies are computed by developing a computer program in MATLAB, The
mesh force over a range of frequencies is estimated for free and forced vibrations considering
torsional only and torsional plus lateral vibrations. Change in mesh force variation is observed if
lateral vibration is included in the analysis. There is a variation of modal natural frequencies as the
mesh stiffness and bearing stiffness changes. The results of investigation show that there is a
significant change in mesh force owing to the introduction of lateralvibrations.

Key Words: Mesh stiffness, Natural frequencies, bearing stiffness, torsional vibrations.

*  Prof. & Head Dept. of mechanical Engg., Bharati vfdyapeeth university college of engineering, Pune
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1. Introduction gear systems. Many times in gear dynamiés
analysis, the effect of the lateral vibration is not
taken in modeling the system assuming that the
effect of the lateral deflection in a typical gear
system is negligible as compared to the
torsional effect. This assumption is not true in
case of many configurations such as that of an
overhung type gears rotating at high speed, in
which the whirling resonance speed occurs
within the operating frequency range.

Transmission system is a complex structure
consisting of driver and many other
components: shafts, gears, couplings and load.
Commonly, gears are used in power
transmission systems. The primary source of
gear vibration and noise is the dynamic
excitation owing to changing stiffness of the
meshing teeth. The mesh stiffness associated
with elastic tooth varies as the number of teeth )
in contact changes. Determination of these H Vinayak and R Singb, ‘used multi-body
unstable operating conditions and identification ~ dynamics modelling strategy for rigid gears to
of design parameters that minimise their include compliant gear bodies in multi-mesh
occurrence are crucial to the désign ofaquieter transmissions [1]. The natural frequency and
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.vibration mode sensitivities to system
parameters were studied by J Lin and R. G
Parker [2]. Non-Linear dynamic response of a
spur gear pair ( finite element modeling and
experimental result comparison) was studied
by R. G. Parker, S. M. Vijyakar, T. Imajo, [3].
Jian Lin and R. G. Parker worked on the
‘parametric resonance in two-stage gears and
concluded that the change in mesh stiffness
causes parametric instabilities and severe
vibrations in geared systems [4].Vibration and
noise is a major consideration in the desigh of
high performance geare transmissions,
requiring smooth and quieter operatioﬁ of
machinery [5]. Shengxiang Jia, Jan Howard,
and Jiande Wang, studied the dynamic
modeling of multiple pairs of spur gears in mesh,
including friction and geometrical errors [6].

It can be seen that many researchers have
worked on changing mesh stiffness and bearing
stiffness of geared system but interaction
between torsional and lateral vibration is a
neglected area. In this paper development of a
computer program to calculate- natural
frequencies and mesh force is discussed and an
attempt is made to establish interactions

Fig. 1 Mathematical model of Geared shaft
system.

The gears are modeled as rigid' discs. Contact
between pinion and gear is modeled as a spring
having linear stiffness only in the tangential
direction referred as mesh stiffness hereafter.

m, , m,=Mass of pinion and gear.

r,,r,=Pitch circle radius of pinion and gear.

U,, U,=Mass unbalance in pinion and gear.

between the lateral and torsional responses ina

simplified manner. Also variation of natural
frequency with change in mesh stiffness and
bearing stiffness is explained.

2.1 Mathematical Modelling of the System

Consider a linear dynamic system (Fig. 1)
consisting of a pinion and gear driven by a
motor and load. The self weight of shaft,
- gyroscopic effect of rotor is ignored in the
model.

N=Inverse of gear ratio.
©,, ®,=Angular displacements of pinion and
gear.
@,,, ©,=Angular displacements of motor and
load.
K.= Mesh stiffness.
¢=Pressure angle.
Q= Rotationél speed of pinion.
X,,X,=Displacement in Z direction
(horizontal).

Y,, Yg =Displacement in Y direction (vertical).

50
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T, .T,=Motor and load torques.

T,.T,=Pinionand gear torque.

The assumptions made in the equation of

motionare:

1. Gears are modeled asrigid discs.

2.

(W8]

m, 0 0 0 0
0o m, 0 0 0
0 0 m, 0 0
o 0 0 m O
o 0 0 0 /[
o 0 0 0 O
o 0 0 0 0

(0o 0 0 0 0

K, +K, -K, 0

-k, K. +K, 0
0 0 K,
4 0 0 0
r.K., r.K, 0
-r,K, r.K, 0
0 0 0
0 0 0
( U I,Q2 cos Qt
U, N’Q’ cos(NQxt +y ) |
l{ I,Q2 sin Qt
B ﬂ U NQ sin(NQs+y)
TI’
TH
L,
L T

1

Lateral displacements are small.

Axial motion and forces are negligible.

Angular velocity is small.

4.
5. Unbalance is small.
6. The bearing qharacteristics are linear.
7. Damping effect at bearings and mesh are
ignored.
The equation of ‘motion is written using the
Lagrange method [7]:
'] [ oo
0 0 y,ﬂ g
0 01iy, /
0 0ijlx,
00 s
0o ofls,
0 0] 9“&,
JIM 0 em
0 J,|16)
r.K., -r, K, 0 0 y,,}
r,,Km rgKm 0 0 ||y,
0 0 0 0 |jx,
0 0 0 0| X, L
riK,+K, K, K -0 lo,
—rr K, rlK.+K 00 =K 4B,
-K, 0 K, 0 {19,
0 -k, 0 K, |8
e 00000 (1)
Natural frequencies of the system are obtained
by solving the eigen values of the determinant of
Eq. 1 considering both free and forced vibration
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as well as torsional and torsional plus lateral
vibrations. A MATLAB program Graphic User
Interface (GUI) is developed. Fig. 2 shows the
screen shot of the user interface of the program.

After entering all the data for input fields as
shown in Fig. 2, one has to select the choice

from the menu for torsional system or torsional
and lateral system, the program will display
graph of frequency Vs mesh force and all the
values of the natural frequencies after pressing
the calculate button on the menu screen.

/ Define System Parameters /
\ &

Define Mass Matrix.

v

Define Stiffness Matrix.

h 4

Define Damping‘Matrix.

Choice : 2

Choice : 1
Torsional vibrations
Torsional Vibration.

Torsional and Lateral
Torsional and Lateral Vibration.

Define matrices a & b

v

Calculate eigen values

4

Save the diagonél values to matrix d

2

Store values of original lambda in
ascending order.

4

Convert the frequencies

to normal value:
(rad/sec).

2

Compute frequenbies in Hz.

Y

Calculate mesh force

vV

Plot mesh force Vs frequency

Q
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Fig. 2 Screen shot of user interface of

-

2.2 Torsional vibration response

The torsional vibration is obtained using Eq. 1.
The value of bearing stiffness assigned is
infinity to nullify the effect of the lateral
vibrations. Thus the torsional vibrations of a
system will be taken into account neglecting
lateral vibrations. Therefore the present system
has four degrees of freedom as givenin Eq. 2.

program.
;
10 0 0]fd) [k K -rrk, -K 70 |f6,) [T
vy 2

0 7, 0 Oﬁ_g&-;- -t K, r,'K,+K 0 -K <egL=<Tg¥
0 0 J, 0[, -K, 0 K, 0 (8. |Ta
0 0 0 JJi6) | o -k 0 K i8] I @)
12K, +K,~o’l, —rrK, K, o |fe,)

-rrK, rg’Km+Kt—o’lg 0 o | P

K, 0 K -0’J, 0 0,
0 -K, 0 K-o¥]l8] ©)

2.3 Combined torsional and lateral vibration
response

The resbonse of combined torsional and lateral
vibration is computed by using Eq. 4. The
combined system has eight degree of freedom,

i.e. fourin torsional and four in lateral direction.

The various natural frequencies are computed
using Eq. 2, Eq. 3 and Eq. 4 using the developed
GUL Mesh force versus frequency response is
thus predicted.

(K +K,-afm, K, 0 0 rK, rK, 0 0 %)
-, K+K-o'm 0 0 K, K, 0 0 |IX
0 0 K-&m O 0 0 0 o |x,
0 0 0 K-om 0 2 0 0 A
K, K 0 0 rKsK-ol, -k K0 18
-+, K, 0. 0 K RKAKL 0 K6
0 0 0 0 K 0 K-, 0 |,
0 0 0 0 0 K 0 K-8 —
Q
Ed




2.4 System parameters

The system parameters used for analysis are given in Table 2.1

Table2.1
Parameter Value
Mass of pinion, m, 2.7kg
Mass of gear, m, 2.533 kg
Mass Moment of Inertia for pinion, I, | 0.00216 kg-m’
Mass Moment of Inertia for gear, I 0.001781 kg-m’
Mass Moment of Inertia for motor, J, 0.001017 kg-m’
Mass Moment of Inertia for load, J, 0.017 kg-m’
Bearing stiffness in x-direction, K, 1.4x 10" N/m
Bearing stiff;;éss in y-direction, K, 1.4 x 10’ N/m
Mesh stiffness, K, 1x 10" N/m

Torsional stiffness, K,

13338.96 N-m/rad

Radius of pinion, r, 0.04m
Radius of gear, r, 0.6375 m
Mass unbalance on pinion, U, 0.0003 kg-m
Mass unbalance on gear, U, 0.00028 kg-m
Module 2.58 mm

No. of teeth on pinion 29

No. of teeth on gear 27

Pressure Angle (6)

20° (0.349 radians )
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3. Discussion and results

Using the GUI program, computed modal
frequencies for system parameters are given in
Table 2.1. The comparison of response of mesh
force Vs frequency for torsional and torsional
plus lateral vibration is also presented here.

3.1 Torsional Vibration Analysis

The modal frequencies for the Torsional mode
of vibration are estimated by solving the eigen
values of the determinant of Eq. 3. The
computed modal frequencies for the system
parameters from Table2.] are:

+0,+381.7476,+665.5171,+882.2625 (Hz).

e R (S EaR
SLERAT A A G Frequancy (mdf) sl T e s i N rRe B

Fig. 3 Mesh force Vs frequency (torsional
vibrations only)

3.2 Torsional plus lateral vibration analysis

The modal frequencies for the torsional plus
lateral vibration are estimated by solving the
eigen values of the determinant of Eq. 4. The
modal frequencies for system parameters of
Table2.1 are:

=0, +241.4450, :t362.4!17, + 368.1675,
+374.1679, £528.2062, +672.5216, +897.1014
(Hz).

oy

Fig. 4 Comparison of mesh force Vs
frequency (Torsional only and torsional plus
lateral vibrations)

Comparison of mesh force (Fig. 4) indicates
more number of peaks (05) in case of combined
torsional and lateral vibrations as compared
with torsional vibration (02). These peaks of
mesh force will predominantly affect the
performance of gear system and may cause

fatigue. However, the magnitude of mesh force ™

throughout the frequency range attains a lower
value.

3.3 Effect of mesh stiffness on natural
frequency

Effect of gear mesh stiffness on the modal
frequencies of geared shaft system is predicted
by varying mesh stiffness*(10° to 10"N/m). Fig.
5 shows that as the mesh stiffness increases
natural frequency increases baring mode 3 &5.

Froquency
REEAEEEEREEEEEE R

S A :
O 1000000 2000000 30000 4006000 SOCOJ0T E3000C0 TDOOODE GOOOGOT UOSC0O  HXGKKED 10009CD
MeshOUinsss Nm

Fig. § Mesh stiffness Vs frequency
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Table: 3

Mode Number Frequency Hz Percentage increas
' Minimum Maximum in frequency

1 0 0 0 |

2 130.4608 229.4231 75.8562

3 362.4117 362.4117 0

4 366.9895 368.108 - 0.3047

5 374.1679 +374.1679 0

6 396.0175 486.9673 - - " 22.9661

7 573.2741 659.7224 15.0797

8 704.1497 *892.0767 26.6850

-Fig. 5 shows that the modal frequency varies
with mesh stiffness. It has maximum variation
. (75.8562%) for second mode and (26.6850%)

incase of 8 thmode (Table. 3).

34 Effect of bearing stiffness variation on

natural frequency

The range of the-selected bearing stiffness is

1x10° to 1x10" N/m with an increment of 10,

00,000. Fig. 6 shows the effect of bearing

stiffness on natural frequency.

mwmmmmmmwm

Boaring Stffness {N-m)

Fig. 6 Bearing stiffness Vs frequency.

Table: 4
‘Mode Number Frequency Hz Percentage increase
Minimum Maximum in frequency
1 0 0 0
2 70.0846 202.5486 189.0058
3 96.8586 306.2938 216.2277
4 98.4418 311.1771 216.1026
5 100.0006 316.2296 216.2277
6 435.8012 469.8555 7.8141
7 654.8155 657.9297 04755
8 878.0877 887.2946 1.0485
5



Fig. 6 shows that the modal frequency varies with bearing stiffness. It has maximum variation
(189.0058%)) for second mode and (1.0485%) in case of 8 "mode (Table. 4).

It can be concluded that the increase in mesh stiffness causes considerable frequency change for

higher modes than lower modes, the increase in bearing stiffness causes considerable frequency

change for lower modes than higher modes.
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