Message Logging & Checkpomtmg

Mobile
. Computmg

Lafit Kumar*
Parveen Kumar*
R. K. Chauhan**

1. Introduction

A mobile distributed computing system (MDCS) is a
distributed system where some of the processes’ are
running on mobile hosts (MHs). An MH.can change its
geographical position freely from one cell to another
or even to an area covered by no cell. Amobile host
communicates with other nodes of the distributed
system via a special node called mobile support

station (MSS) [1]. A cell isa geographlcal area around”

an MSS in which it can support an-MH. MSS has both
wired and wireless links and acts-as an interface
between the static network and a part of the mobile
network. Static network connects all MSSs {1]. A static
node that has no support to MH can be considered as
MSS withnoMH.

“w

Checkpointing is atechnique that can be used for fault
tolerance provisioning in dlstrlbuted systerns. A
checkpoint is the state of a process on stable storage.
In distributed system, a system state is sald to be
consistent if it contains no-orphan méssage; |e a
message ‘whose receive event is recorded inthe’ state;

but its send event is not recorded in that state. To _

recover from a failure, the system restarts its-execution
from a previous consistent global state saved on the
stable storage. This saves all the computation done up
to the last checkpornted state and only- the
computation done after that needs to. be redone [8]. In
distributed systems, checkpomtrng can be
independent (asynchronous), coordlnated
(synchronous) -or quasr-synﬁhronous [2], 110].

Message logging is also used -for’ fault tolerance :

provisioning in distributed systems [e.

¢ LD

a ngla:rnodeﬁforg:es I} ¥
oy VAL g‘éf ﬂyﬂ-jﬁ - SUATY r .' e 1.
1Ib the lastcon’srstent ched) int.
uresﬂ“lf‘ 7;

ﬂ'_u‘-.;

roﬂback
e

TRt A0

in

et!
aé"ci;‘“*pom

In the asynchronous protocols processes take the

Tocal “checkpoints independent of. the other:

coordinated checkpointing, processes take-
checkpomts in such a manner that the resulting global
state” is .consistent. Mostly the coordinated
checkpointing protocol followsthe two-phase commit -
structure.. ‘In the first phase, processes take tentative
checkpomts and in the second phase, these are ‘made

‘permanent.. The main advantage' is that only one

permanent checkpoint and at most one tentative
checkpoint is required to be stored and the recovery is
verysrmple[9], [12]. '

fn message Iogglng protocols, each process
perlodlcally records its local-state_and logs the
messages that it recerves after- havrng recorded that
state. When a process crashes, a'new process is
created in its place: The riew process is given the

BVCOEF's MET journal

51

E

appropriate recorded local state, and then the logged
messages are replayed in the order they were

originally received at the original process. All °

message-logging protocols require that once a crashed
process recovers, its state is consistent with the states
of the other processes [8], [16], [15], [3].

The MSSs can easily take the consistent checkpoints
using synchronous protocols [9], [12], [13] since they
can communicate with each other by using the high-
speed network and they have enough stable storage to
store their state information. There are synchronous
checkpointing protocols for mobile systems [5], [6],
[14],. [20]. Here, all processes need to abort the
checkpoints in case of a fault atany node. It becomes
difficult for multiple mobile hosts to synchronously
take checkpoints since the communication chanriels
with the mobile hosts are less reliable and may
disconnect even during taking checkpoints. Higaki
and Takizawa [11] have shown that there is a good
probability that at least one MH fails to take the
checkpoint synchronously with other hosts and it is
difficult to take a synchronous checkpoint.

Therefore, some asynchronous checkpointing
protocols have been proposed for mobile systems [1],
[11], [15]. Acharya and Badrinath [1] introduced a two-
phase method for taking global consistent
checkpoints. They proposed that checkpoints be
stored on the stable storage of mobile support stations
instead of on mobile hosts. In their protocol, processes
alternate between two states, SEND and RECV. If a
process is il the send mode and receives a message, it
is forced to take a checkpomt. During recovery, the
global state is reconstructed from a set of checkpoints
foreach process.

Pradhan et al analytically evaluated the performance
of different state saving protocols and hand off
strategies [15]. They also proposed storing
checkpoints and message logs at MSSs. Their result
indicates that message logging is suitable for mobile
environments except in cases where mobile host has
high mobility, failure rate is high, and wireless
bandwidth is low. Bin Yao et al. [3] describes a
receiver based message logging protocol for mobile
hosts, mobile support stations and home agents in a
Mobile IP environment, which guarantees
independent recovery. Checkpointing is utilized to
limit log size and recovery latency. Higaki and
Takizawa [11] proposeda checkpointing protocol
where mobile hosts checkpoint independently and

fixed ones synchronously and all processes are
blocked during taking synchronous checkpoints.

/
Neves N. et al. [17] proposéd a time based
coordinated checkpointed algorithm for mobile
environments, which incurs zero message overhead

.and only piggybacks csn.

In this paper, we propose a hybrid checkpointing
protocol having following characteristics. It is non-
blocking. MHs take checkpoints independently. If an
MH fails to take its checkpoint and transfer it to the
current MSS, it can try later. MSSs take checkpoints
synchronously. In order to realize non-blocking
during checkpointing, we use three bits-Cl to be
piggybacked onto normal messages instead of integer
csn used in literature [6], [9], [14], [20]. .If aprocess on
an MH, that his higher probability of failure than MSS,
fails, it can recover independently. When a process on
an MSS fails, all processes rollback to most recent
synchronous checkpoint. An MH uses its recent
committed checkpoint and message logs to reach to a
state consistent with synchronous checkpoint of
MSSs. The algorithm does not awaken an MH in
doze mode operation. An MH can remain
disconnected for an arbitrary period of time without
affecting checkpointing activit),l.

The rest of the paper isorganized as follows. Section 2
presents system model. In Section 3, we describe the

"hybrid checkpointing algorithm.-. In sextion 4, we

compare the proposed algorithm with existing ones.
Section 5 presents conclusions. : “

.

2, System Model

Our system model is similar [5] and [11]. A mobile
computing system consists of a large number of MHs
and relatively fewer MSSs. An MSS has both wired and
wireless links and acts as an interface between the
static network and-a part of the mobile network. Static
network connects all MSSs. A cell is a logical or
geographical area covered by an MSS. An ‘MH can
directly communicate with an MSS by a reliable FIFO
wireless channel only if it is present in the cell
supported by the MSS. There aren spatially separated
sequential processes denoted by P,, P,, ..., P,, running
on mobile hosts (MHs) or on static hosts (MSSs),
forming a mobile distributed computing system. Each
MH or MSS has one process running on-it. The
processes do no share common memory or common
clock. Message passing is the only way for processes
to communicate with each other. Each process

52

BVCOE's MET journal

-

progresses at its own speed and messages are message and finds that sender's Cl is higher than its
exchanged through reliable channels, whose own Cl, it concludes that sender has taken the
transmission delays are finite but arbitrary. The checkpoint for the new initiation; therefore, it takes
messages generated by the underlying computation the checkpoint before processing the message.

are referred to as computation messages or simply
messages, and are denoted by m,. A process is in the
cell of MSS means the process is either running on the
MSS oron an MH supported by it. It also includes the Every process maintains current ‘checkpoint interval
processes of MHs, which have been disconnected (cci) and next checkpointing interval {nci).

from the MSS but their checkpoint related information
is still with this MSS. The ith Checkpointing interval of
a process denotes all the computation performed
between its ith and (i+1)" checkpoint, including the
ith checkpoint but not the (i+1)" checkpoint. We
assume a three-bit sequence number for identifying

3.2 Maintenance of Different Checkpointing
Intervals

Initially for a process cci and nci are [000] and [001]
respectively. When a process updates its Cls, it sets
cci=nci; nci=modulo 8(nci**). When no
checkpointing process is going on, all the processes
arerunninginthe sameCls. -

the checkpointing intervals, 3.3 Handling Node Mobility
3. The Hybrid Checkpointing Algorithm We explain the handling of node mobility in our
3.1 Basic Idea protocol with reference to Figure 1. Initially, MH, is

o ‘ . + connected with MSS,. MSS, sends messages m, and m,
It is difficult for -m““'Ffle 'T‘Ob'le hosts to MH,. MS§; receives the acknowledgement of m, and
synchronously take checkpoints since the channels not of m, from MH,. After this, MH, disconnects from
with the mobile hosts are less reliable and may MSS, and connects to MSS,. During disconnection

dlscqnnect even during taking c!‘neckpo mt.? ,[”]‘ period, MSS; receives m, and m, for MH, and buffers
Mobile hosts are prone to frequent failures and it is not . ,
. . them. As MSS; is one hop away from MSS,, therefore,
advisable to rollback all processes in the event of an .)
MSS, transfers only in-transit messages (m,) and

MH failure. Therefore, we have proposed .
independent checkpointing forMHs. All thetoand fro ~ Puffered messages (m,, m,) to MSS,. It doen not .
transfer tentative state log (tsl,) and message log (tml,)

messages of an MH pass through its current local MSS. § :
Therefore, the current local MSS can easily log Of MH,to MSS;. MSS, sends in-transit and buffered

messages of the MHs in its cell. In case of anMH messages to MH. MH, processes the in-transit

failure, it can recover independently by usingmessage messages if it has not processed them; otherwise, it
logs and checkpoints. simply sends the acknowledgement. After processing

. L in-transit and buffered
In order to address different checkpointing intervals _

(Cls), we have replaced integer csn (checkpoint A
sequence number) used in [6], [9], [14] with three bits MSS,] I ;
Cl. We have considered only eight different =
checkpointing intervals and so the information
piggybacked onto application messages is just three
bits as compared to ever increasing csn. We have not
considered Cl of one bit [13] or two bits suitable,
because by using one bit CI we shall be able to

distinguish only two Cls, and by using two bits we : ---———-— S
shall be able to distinguish four Cls, which we assume- ot MH| :
to be insufficient. In case of three bits, we shall be able

Figure 1

to distinguish eight different Cls, and we infer that it is
justsufficient for all practical purposes. messages, MH, starts normal functioning. Now, MH,
Whenever a fixed host takes its checkpoint, it updates disconnects from MSS, and connects to MSS,.. As MSS,

its current Cl and piggybacks current Cl onto is one hop away from MSS, therefore, it only transfers
application messages. When a process receives the in-transit and buffered messages to MSS,. Now, MSS;

BVCOE's MET Journal 53

R —————e e et

becomestwo hops away from MSS,, therefore, it sends
tsl; and tml, to MSS,. In this way, all tentative stateand
message logs of an MH are on its current local MSS or
" on an MSS at most one hop away from the current
MSS.

3.4 Checkpointing Protocol

We assume that a single process on an MSS initiates
checkpointing.

(@ Algorithm executed atinitiator MSS (say MSS,)

stable storage in the current initiation are
removed from the stable storage; / they
remain on temporary storage as priors to this
initiation;

On receiving Commit message from the initiator
MSS:

() | All MsSs discard their earlier committed
checkpoints;

() | Initiator Process takes the checkpoint;
updates its Cls;

(i) | If an MH, has taken checkpoint in the current
checkpoint interval, then all previous
committed message and state logs are

dlscarded

(ii) | Initiator MSS sends tentative checkpoint
request along with current Cl of initiator
process to all MSSs; '

(ii)] Set- timer;; // timer, is a flag, set to 1 when

maximum allowable time for collecting
//'hybrid checkpoint expires.

(iv)| waitfor response;

(v) | At timer, or on receiving unsuccessful

response from some MSS:
Send message Abort checkpoints to all MSSs;

i)l On receiving successful responses from all
MSSs:
Send message Commit checkpoints to all

MSSs.

() Algorithm executed atany MSS:
On receiving tentative checkpoint request from
initiator MSS or on receiving a message for any
processin its cell of higher cci then the local cci:
(i)~ processes running on the MSS take tentative
- checkpoints;
/] processes on MSSs process the messages of
higher.cci only after taking checkpoints.
all tentative state and message Iogs of MHs
are stored in thestablestorage,)
Il processes on MHs or MSSs process the
messages of higher cci only.after completion
of this task.
(ii) Inform the initiator MSS about the failure or
sticcessful execution of the above steps;

| Onreceiving Abort message from theinitiator MSS:

(i) | All MSSs discard their tentative checkpoints of
the current initiation;

(ii) | Undo the updating on Cls;

(iii)|All the state and message logs transferred to

(0 Independent Checkpomtmg and Message
logging ofMHs

Each MH, has to restart the computation from a state
consistent with Coordinated Checkpoint (CC) taken '
by all MSSs. MH,'s checkpoint (say CM) may not be
consistent with CC because MH, takes CM,
independently of the other hosts. Hence, MH, has to
restart the computation by using message log. Here,
the messages sent and received after CM, by MH, are
stored in the message log in the stable storage of MSS.
If MH, restarts the computation, MH, rollbacks to CM,
and replays the received messages after CM, to get the
state consistent with CC.

Let MH, be in the cell of MSS,. All the to and fro
application messages of MH, are Iogged in the volatile
storage at MSS;. Whenever MH, wants to take its
checkpoint; it takes its checkpoint and transfers it to
MSS,. If MH fails to take its checkpointand transfer it to
MSS, it can try later. If MH, successfully transfers its
checkpoint to MSS,, all previous temporary message
and state logs of MH, are discarded. Previous
temporary messages include messages that are
received or sent by the MHi before taking the
checkpoint and are stared in the temporary or volatile
storage of different MSSs. These are available on MSS,
or some other MSSs that are situated at most one hop
away from MSS,.

When MSSs make their local checkpoints permanent,
MH, also makes its most recent checkpoint (temporary
or permanent) permanent (say c) and store its message
logs (temporary or permanent), after ¢, in the stable
storage. The entire message logs and state logs before
c,are discarded. If MH, has not taken any checkpoint,
its all-previous message logs are stored in the stable

54

BVCOE's MET journal

storage. It can reach to the state consistent with CC by
starting from the initial state and recomputing the
received messages, in the order, they were actually
processed.

The order of messages received and sent by the MH
may be different at the local MSS that logs the
messages on behalf of the MH. The exact order of the

_ messages at the MH can easily be known by the MSS if
the MH gives monotonically increasing sequence
number to each sent or received message and the MSS
is made aware of these sequence numbers.

4. Comparisons with Existing Schemes

The Chandy-Lamport [7] algorithm is the earliest non-
blocking coordinated checkpointing algorithm.
During checkpointing, markers are sent along all
channels in the network, which leads to a message

complexity of O (N?). It requires all processes to,
synchronously take checkpoints and channels need to

be FIFO.

Elnozahy et al. [9] proposed an all process non-
blocking coordinated checkpomtmg algorithm. They
have used ever-increasing integer csn to be
piggybacked onto normal messages. We use three bits
Clinstead of integer csn for the same purpose.

The Koo and Toueg [12] algorithm is a minimum
~ process coordinated checkpointing algorithm. It
requires processes to be blocked during
checkpointing. Checkpointing includes the time to
find the minimum interacting set of processes and to
save their state of processes on stable storage, which
may be too long. Therefore, this extensive blocking of
processes may significantly reduce the performance of
the system in mobile environments where some of the
MHs ‘may not be available due to disconnections.
Each process uses monotonically increasing labels in
its outgoing messages. It forces only interacting
processes to synchronously take checkpoints.

Prakash et al. proposed a minimum process non-
blocking coordinated checkpointing scheme for
MDCSs [18]. But this protocol may lead to
inconsistencies in some situations [5], [6]. They have
used a bit array of length n, for n processes, to be
piggybacked onto normal messages.

Cao and Singhal [5], proposed minimum process non-
blocking checkpointing schemes for MDCSs by
introducing the-concept of mutable checkpoints. In

their protocol, only minimum number of processes
takes permanent checkpoints, but the actual number
of processes that take checkpoints can be exceedingly
high than the minimum required. The useless
checkpoints are discarded on commit. L. Kumar et al.
[14] and P. Kumar et al. [20] proposed a non-blocking
minimum process checkpointing protocol for MDCS
and significantly reduced the number of useless
checkpoints as compared to [5]. These protocols use
integer csn to be piggybacked onto normal messages
and require .interacting processes to synchronously
take checkpoints. We use three bits Cl in place of
integer csn. '

All the abpve-i/nentioned prdtocols i.e. [5], [6], [8], [9],
[121, [14], [18], [20], require all or interacting

" processes to synchronously take checkpoints. In these

protocols, if a single process fails to checkpoint, all
processes abort their checkpoints taken in the current
initiation. In our case, only MSSs take checkpoints
synchronously. In our protocol, if an MH fails to
checkpoint, it can try later. During synchronous
checkpointing, MHs are not forced to checkpoint .We
use three bits Cl, to be piggybacked onto normal
messages, to realize non-intrusiveness during

“checkpointing, instead of integer csn, used in
literature [6], {9], [14], [20].

Acharyaand Badrinath [1] gave the first checkpointing
protocol for mobile systems based on quasi-
synchronous approach. In this protocol, an MH is
forced to take a local checkpoint whenever a message
receipt is preceded by message sent at that MH. This
algorithm has no control over checkpointing actuvuty
on MHs and depends totally on communication
patterns. In worst case, the number of local
checkpoints may be twice the number of
computation - messages, which may degrade the
system performance. In our scheme, there is a strlct
control on checkpointingactivity.

Higaki and Takizawa [11] have proposed a hybrid
checkpointing protocol, where checkpoints are taken
asynchronously by MHs and synchronously by MSSs.
During checkpointing, MSSs coordinate to
checkpoint. All processes are blocked during
checkpointing that can significantly degrade the
system performance. In our protocol, no blocking of

processes takes place.
'}

Bin Yao et al [3] proposed receiver based rﬁessage
logging for MHs and MSSs. In MDCS, the MSSs can

BVCOE's MET journal

55

easily take consistent checkpoints since they can
communicate with each over static network and have
good stable storage.

5. Conclusions

In this. paper, we have presented a non-intrusive
checkpointing protocol for mobile distributed
computing systems. It may be difficult for multiple
mobile hosts to synchronously take their checkpoints
due to their specific characteristics. In our protocol,
the mobile hosts take their checkpoints

| 'December 1 984

'?

asynchronously and MSSs take their checkpoints
synchronously. Thus, it relives the MHs from taking
the checkpoints in synchronization with MSSs. The
protocol for checkpointing MSSs is non-intrusive. In
order to realize non-intrusiveness, we use three bits to
identify different checkpointing interval that is
piggybacked onto normal messages, instead of ever-
increasing integer checkpoint sequence number used
in many protocols in the literature. The proposed
protocol is optimal in using the scare resources of the
MHs.

kh

' /

5. Cao G. and Smghal M "On the Imposs:blllty of Min-process Non-blocking Checkpointing and an'--

Efﬁelent Checkpomtmg,\/\lgorlthm for Mobile Computing Systems,”

Proceedings of International

S Confefenceqn Parallel Processing,;pp '37-44, August1998

. i, Mutable Checkpomts ANew Checkpointmg Approach for Moblle Computmg
on’ On *Parallel and Dlstnbuted Systems, vol.112, no. 2, pp. 157-172, February

8 "Elnozahy E. N Alvuéi L WangY M. andeiohnson DB, “A Survey of Rollback—Recovery Protocolsin
: Message-,PassmgSystems," ACM ComputmgSurveys, vol 34 no.3, pp 375-408,2002. S

: 'I-'I'lgaki H and Takizawa M ‘Gheckpomt—reeovery Protocol for Reliable Mabile Systems Trans. of
5 _-.-lnformatmnpmoessmgdapanwol '40/n0.1, pp. 236-244,Jan. 1999.

:'_:!.2 _qu R and TouegS:; iCheﬁlqmi“riﬁqg and Roli—Back Recovery for Distributed Systems IEEE Trans. on

; __ftware Englneering : ’o_l__
_1 ;L"Kumar M. Mlsra, R v{]oshut

el

PP- 23-31 ,January 1987..
Ghetkpomtmg in Dlstnbuted Computmg Systems Book Chapter

‘Concurrencym Dependabletnmputlngﬁpp 273-92,2002.
'14 L. Kumar, M. Misra, RC loshi ‘L*ow overhead optimal checkpomtmg for mobile distributed systems”

56

BVCOE's MET Journal

* Dept. of CSE, National Institute of Technology, Hamirpur (HP), India.
**Dept of Computer Sc & Applications, K.U. Kurukshetra (HRY), India

lalitdec@yahoo.com; pk223475@yahoo.com -

BVCOE's MET journal 57

