Extending the Native File System Functionality for Data Compression
Using Vnade Stacking
Mandar Karyak;rte*, Suhas Patil**, R K Prasad***

Abstract

File-handling services are the most user-visible part of the operating system and so new
enhancements are often proposed to the existing file-handling services. But very few enhancements
become widely available as developing file systems from scratch are difficult and error prone,
Source access is required, and the work involves deep understanding of that operating system's
internals. Once the work is accomplished on one platform, a port to another is almost as difficuit as
the initial port. A Layered approach based on vnode stacking is easy and feasible technique to
extend the file system functionality. The native Jfile system can be enhanced to provide service like
Jan-out, anti-virus, access control, encryption, compression etc. The paper discusses the
Compression File System (CFS)) based on vnode stacking which will reside below the virtual file
system (VES) and above the native file system (Ext2, Ext3 etc.). The data from user is saved to the
disk after compressing it and is retrieved by the user after decompressing it. The compression ratio
achieved varies in the range of 10 — 70 % based on the type of data compressed. The file system is
efficient as it executes in the kernel and easy lo use as it can be mounted on top of native file system.

Index Terms: Virtual file system, vnode interface, FIST, mounting.,

* Department of Information Technology, Vishwakarma Institute of Information Technology, Pune
karyakartg.ms@gmail.com, '

** Department of Computer and IT, Bharati Vidyapeéth University College of Engineering, Pune.
*** K JSomaiyalnstitute Of Engineering And Information Technology, Sion, Mumbai

1. Introduction development is so difficult, ‘extending file
system functionality in an incremental manner
is valuable. Incremental development also
makes it possible for a third-party software
developer to release file system improvements,
without déveloping a whole file system from
scratch.

The basic task of any operating system is to
provide data management functionality.
Managing data through the file system includes
storing data on disk (or over the network) and
naming (i.e., translating a user-visible name
such as /root/mydata into an on-disk object).
File systems are complex, and enhancing them The file systems initially were tightly coupled
involves understanding the file systemcodeand with the core of the operating system, system
internals of the kernel. F urthermore, operating calls directly invoked the file system functions.
System developers and vendors are reluctant to ~ This arrangement made the addition of new
make major changes to a file system, because facilities more difficult. Additional facilities
file system bugs have the potential to corruptall could be incorporated only by developing the
the data on a machine. Because file system new file system from scratch. The introduction -

BVCOE'S JMET - 33

of a virtual node or vnode provided a layer of
abstraction that separates the core of the
operating system from file systems [9]. Each
file is represented in memory by a ynode. A
vnode has an operations vector that defines
several operations that the OS can call, thereby
allowing the operating system to add and
remove types of file systems at runtime. Most
current operating systems use something
similar to the vnode interface, and the number of
file systems supported by the OS has grown
accordingly. For example, Linux 2.6 supports
over 30 file systems and many more are
maintained outside of the official kernel
tree.[11]

The vnode stacking produces a file system that
can be an extension to VFS compatible file
systems in Linux. It is a file system that is
stacked a layer above the physical file system.
When a file system is mounted on top of any
other file system, the stackable file system adds
a performance overhead of only 1-2 % for
accessing the other file system [2] and all the
new features can be included in the stackable
 layer. All the invoked system calls [3] will pass
through the new file system layer before passing
through the underlying file system layers. This
concept is exciting because we can leverage
existing file systems and add functionality such
as fan-out, anti-virus, access control, encryption,
compression and many more. The position of
the new stackable file system is exhibited in the
figurel. -

The currently available file systems provide
additional features. Each file system is unique
and serves a specific purpose when used
independently. However we propose that
instead of writing all these different file systems,
you could write a file system, which sits on top
of the already existing file system and helps to

overcome its limitations. Figurel shows the
topology of our file system stack.

Generic

Specific

Specific

Figure 1. Position of CFS in kernel

The VFS (Virtual File System) [1], [5] is the
software layer in the kernel that provides the file
system interface to user-space programs. It also
provides an abstraction within the kernel, which
allows different file system implementations to
coexist [7]. As our file system framework is
stackable it only has to implement the vnode [7]
operations that it wishes to change. Other
operations are automatically passed through
between stacked layers. This option is similar to
that of object-oriented programming models,
where a subclass can us€ the methods of the
super class [2].

The stacked file system handles many of the .
internal details of operating systems, thus
freeing developers from.dealing with kernel
specifics and provides them with a file system,
which has desired facilities enhanced.

2. Terminology

The design of the stackable file system
framework incorporates a thorough study and
understanding of concepts like Virtual File
System Interface, Stackable femplates and other
related terms. '

34

BVCOE'S JMET S

2.1 Virtual File System

The Virtual File System is the software layer in
the kernel that provides the file system interface
to user-space programs [1]. It also provides an
abstraction within the kemnel, which allows

different file system implementations to coexist.

When you wish to mount a block device onto a
directory in your file space, the VFS will call
the appropriate method for the appropriate file
system. The dentry for the mount point will then
be updated to point to the root inode for the new
file system [4].

Basically, VFS is a generic section of file-
system code in the (Unix) kernel, often called
the upper-level file-system code because itisa
layer of abstraction above the file-system
specitic code. In particular, when system calls
begin executing in the kernel's context, the
kernel then executes VFS code for those system
calls. The VFS then decides which file system
to pass the operation onto. The VFS is gerieric in
that it does not contain code specific to any one
file system; instead, it calls the predefined file-
system functions that were given to it by
specitic (lower evel) file systems 21,171

vEs Garten
MINIX EXT2

Diroctory
Cacho

‘Buffor

Carhe

3
Dirk
Drivom

Figure. 2 Vnode Block Diagram

Vnodes are the primary objects manipulated by
the VFS. The VFS creates and destroys vnodes.
It is a handle to a file maintained by a running
kernel. This handle is a data structure that

contains useful information associated with the
file object, such as the file's owner, size, last
modification date, etc [7]. The Vnode object also
contains a list of functions that can be applied to
the file object itself. These functions form a
vector of operations that are defined by the file
system to which the file belongs. It fills them
with pertinent information, some of which is
gathered from specific file systems by handing
the vnode object to a lower level file system. The
VFS treats vnodes generically without knowing
exactly, w hlch file system they belong to.

The Vnode Interface is an API that defines all of
the possible operations that a file system
implements. This interface is often internal to
the kernel, and resides in between the VFS and
lower-level file systems. Since the VFS
implements generic functlonahty, it does not
know of the specifics of any one file system.
Therefore, new file systems must adhere to the
conventions set by the VFS; these conventions
specify the names, prototypes, return values,
and expected behavior from all functions that a
file system can implement.

2.2 Stackable Templates

Stackable templates provide basic stacking

-functionality without changing other file

systems or the kernel. This functionality is
useful because it improves portability of the
system. Such a template handles many of the
internal details of operating systems, thus
freeing developers from dealing with kernel
specifics [6]. It provides a stacking layer that is
independent from the layers above and belowit.

In the generation of file system code, we have
used Basefs [2] as a stackable template. Basefs
appears to the upper VFS, as a lower level file
system and to file systems below it as a VFS.
Initially, Basefs simply calls the same vnode
3peration on the lower level file system. Basefs

‘BVCOE'S JMET

35

o T |

performs data reading and writing on whole
pages. This simplifies mixing regular reads and
writes with memory-mapped operations, and
gives developers a single paged-based interface
to work with,

To improve performance, Basefs copies and
caches data pages in its layer. It will also cache
pages of the layers below it, in case the lower-
level file system does not do so directly (on
some operating systems, the VFS is responsible
for inserting pages into the cache, not the actual
file system). Basefs saves memory by caching at
the lower layer only if file data is manipulated
and fan-in was used; these are the usual
conditions that require caching at each layer.
Basefs adds support for fan-out file systems
nativély. This''code is also included
conditionally, because it is more complex than
single-stack file systems, adds more
performance overhead, and consumes more
memory. Basefs includes (conditionally
compiled) support for many other features. This
added support can be thought of as a library of
common functions: opening, reading or writing,
and then closing arbitrary files; storing
extended attributes persistently; user-level
utilities &’ mount and unmount file systems,
inspecting and' modifying file attributes, and
more.

3. Design and implementation

To implement vnode stacking and thus enhance
the native file system, a compression file is
developed. The compression file system (CFS)
generates a lot of code using the File System
Translatori.e FiST [2]. The FiST language is the
tirst of the three main components of the FiST
system. The FiST system is composed of three
parts:

Q
1. The language specification,

2. The code generator, and

3. Stackable file system templates.

The system is implemented using following
brief steps

1. The compression functionality to be
added requires selection of algorithm
that will work irrespective of nature of

the data and the file type.

After selecting and implementing the
compression algorithm it must be tested
independently to understand the
compression ratio.

Write the code in fist language in the file
name as cfs.fist. the code is simple
which calls the entry point of the
compression algorithm.

Compile the cfs.fist using the FIST
compiler that will compile the all the
files of compression algorithm to *.ko.

Run insmod command to insert the
kernel-output files and also define the
mount point which is addressed below

The fist compiler ensures of registering
the file system in the /etc/filesystems.

The selection of the compression algorithm was
a tedious job as after deploying the developed
file system it should not put much overhead on
the existing read/ write calls. Secondly, as file
system is a generic system-level application it
needs to work with all kind of the data and can't
be data specific.

The developed file system can be easily
mounted on any name space or path of the native
file system that the user wants. The user prior to
mounting the filesystem on top of the native file
system. should create the CF S_folder. After
successful mounting [3], the folder will have
type of file system as CFS. All file system
operations performed under the CFS_folder will

36

BUCOE'S JMET

henceforth follow the specifications of the CFS
file system framework.

When you unmount this file system, the CFS
will no longer serve the CFS_folder. Hence any
access to files under the CFS_folder will result
in the user reading compressed data.

14

Figure. 3
Directory Structure before mounting

Figure.4 o
Directory Structure after mounting

After the file system has been mounted it is

given to the lower level file systems. The lower
level file system is unaware of the source from
where they are getting the input. Thus they just
process the output of the file system generated
by CFS, as they would normally have. As the
CFSisin the kernel, the overhead incurred is Just
1-2%[2].

Figure 5 shows how the CFS will process a read
system call. As shown in the figure and with
respect to-the command given above, when a

'system call, which processes a request to read

data on the disc, then it, passes through the CFS
layer. And’ the appropriate compression and
encryption functions get called as per those
specified by the user. It is important to note that
the user has to specify this order of algorithms
only at the time of mounting. Firstly LZ77/RLE
decompression gets called and ﬁnélly Huffman
decompression is called [10]. '

Similarly when a write system is encountered
then the reverse process occurs. In this case, our
layer calls the functions of Huffman
Compression, LZ77/RLE compression in order.

'As we can see from. the figure-above, the

stacked on top of the Jower level file systems. As -

-we use a stackable interface, the system calls,
which are executed for doing any operation,
pass through our file system layer. It is at this

~ time that we can call the required functions as

per the users specifications and the output is

interface we will act as a perfect stack. It simply
places itself between the user and the kernel,
without either having knowledge about its
existence. The primary advantage of the CFS is
that the existing file systems need not be
changed at all. Moreover as the stacking takes
place in the kernel, there is hardly any
compromise on the speed. Efficient storage
management is achieved, improving system
performance besides this developer can provide
new algorithms for compression with minimum
effort thus building new file systems.

Shrinking the size of demands for efficient
mapping between the original file and new
compressed file so as to have lossless data
compression. The strategy used is based on

37

BVCOE'S JMET

Local Disc

Figure 5.
Read system call illustration

index file. The index file is a separate file
containing Meta data that serves as a fast index
into an encoded file the index file stores meta-
data information identifying offsets in an
associated encoded file. For efficiency reasons,
we can read the generally smaller index file
quickly, and hence find out the exact offsets in
the larger data file to read from. The alternative
to our design would have been to include the
index data into the main encoded file, but this
would have

1. Hurt performance as we would have had
to perform many seeks in the file to locate
the data needed.

2. Complicated the rest of the design and
implementation considerably.

Decoded File Index File

(Original File)

-

Figure 6 Original File and-
Compressed File with generated index file

Compressed File

18900 (EOF)
16KA20K

Original File
0K 4 8K 12K

Page0 | Pagel | Page2 Pﬁge 3 Pagé 4

{ /

ok | &/ &S 1K
/ / K 7 ,/

Page0 | Pagel Page 2

1230 3750 5210 7700 9570(EOF)

| Compressed File

Figure 7 Illustration of original file' and
compressed file

The figure 6 shows how original decoded file is
mapped into an encoded file of smaller size. The
contents of the index file are tabulated below

Sr:-| Word | Representing | IDXFile
No. | (32 bit)
1 }0-31 Flags and
of pages 4
2 |.32-63 | Original
File size 18900 bytes
3 164-95 | Page 00 1230°
4 Page 01 3750
5 Page 02 5210
6 Page 03 7700
7 Page 04 9570

"Table '11 shows the contents of the index file

38

BUCOE'S JMET |

»

~ little or no madification (e.g., text editors). In
contrast, many applications now must
implement their own security and data
compressioﬁ features.

beeover as code runs at kernel level harder to
crack where user-level applications are
susceptible to attacks. New user applications
also gain from such system security, rather than
have it become a design afterthought.

6. Conclusion

The basic aim of working on the CFS was to

design a file system, which would serve the...-

purpose of filling the loopholes of existing file
systems enable developers to leverage gxisting
stable file systems By providing them with a
means to incorporate both security through
encryption and efficient data storage through
* compression. -

The framework promises to be very successful
because it is an enhancement and not a
replacement to existing file systems, and as the
code resides in the kernel, the o;'erhead incurred

is low. The developer no longer will require

intricate knowledge of file system internals to

v
provide this functionality.
The entire process of writing a file system with
the desired compression requires writing 2
simple functions which will provide the ability
for compression and decompression facility.
Improvement when compared to the Ext? file
system also results in performance overhead. As
all system calls/,.have to pass through the CFS

!

layer, a small amount of additional time is

_required to perform the desired operations,

However the advantages far outweigh these
limitations of the file system.

The CFS automatically compresses the files

stored in its name-space. With more work on

this in the future, we aim to build an intelligent
file system that will selectively compress files
after studying usage patterns.

The vnode stacking can be used to extend and
enhance the file system functionality by
introducing a layer(s) betweep the disk file
system and virtual file system. As the mounted
file system is below VFS it remains to be

efficient as it executes in the kernel space.

BVCOE'S JMET

References

[1]1D. S. H. Rosenthal, “Requirements for a 'Stacking' Vnode/VFS Interface,” UNIX International,
1992.

[2] E. Zadok, “ FiST: A System for Stackable File-System Code Generation,” Thesis Computer
Science Department Columbia University, New York, NY10027, May 2001.

[3] M. Beck, H. Bohme, M. Dziadzka, U. Kunitz, R. Magnus, and D. Verworner, Linux Kernel
Internals, Addison Wesley Longman, 1996.

[4] M.]. Bach, The Design of The UNLX Operating System, Prentice-Hall, Englewood Cliffs, NJ,
1986. ' :

[5]R. Gooch, “ Overview of The Virtual File System,” July 1999. -
[6] Tanenbaum A. S., Modern Operating Systems, Prentice-Hall, Englewood Cliffs,NJ, 1992

[7] U. Vahalia, UNIX Internals, The New Frontiers, Prentice-Hall, Upper Saddle River, New Jersey
07458, 1996. . '

[8] WinZip, The Archive Utility for Windows, version 8.1,2002.

[9] . R. Kleiman. Vnodes: An architecture for multiple file system types in Sun UNIX. In
Proceedings of the Summer USENIX Technical Conference, pages 238-247, Atlanta, GA, June 1986.
USENIX Association.

[10]RFC 1951 DEFLATE Compressed Data Format Specificationver1_3

[11] Erez Zadok, Rakesh Iyer, Nikolai Joukov, Gopalan Sivathanu, And Charles P. Wright. “On
incremental file system development” appears in the may 2006 issue of the acm transactions on
storage (tos)

e

42 BUCOE'S JMET :

