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1. Introduction

Since finite time thermodynamics (FTT) or
entropy generation minimization was advanced,
much work has been carried out for the
performance analysis and optimization of finite
time processes and finite size devices [1-11]. In
these studies, the power output, thermal
efficiency, entropy generation and the ecological
benefits are chosen for the optimization criteria.
However, the performance analyses based on
the above optimization criteria do not take the
effects of engine sizes related to the investment
cost into account. In order to include the effects
of engine size in the performance analysis, Sahin
et al introduced the maximum power density
(MPD) as a new optimization criterion. Using
“the MPD Criterion, they investigated optimal
performance conditions for reversible[12] and
irreversible[13] non regenerative Joule-Brayton
heat engines. In their study, they maximized the
power density ( the ratio of power to the
maximum specific volume in the cycle) and
found design parameters at MPD conditions,
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which led to smaller and more efficient Joule-
Brayton heat engines than those engines working
at maximum power(MP) conditions. The power
density objective was also applied to an
irreversible radiative heat engine[14], ideal
reversible Ericsson cycle[15] and an Atkinson
cycle[16] free of any irreversibility. Sahin et al[17]
applied the MPD technique to the endoreversible
Carnot heat engine which can be considered as
a theoretical comparison standard for all real heat
engines in finite time thermodynamics. In all the
above references [12-17], researchers applied
MPD techniques to the heat engines having
thérmal reservoirs of infinite heat capacity.
However, for practical applications it is very
important to investigate the performance of heat
engine when the effect of finite thermal
capacitance of thermal reservoirs is taken into
account. Recently Chen et al [18] have applied
MPD techniques to an endoreversible closed
variable temperature heat reservoir Brayton cycle.

The present work is different from a recent work

of authors [19]. In reference [19], the
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erformance of an endoreversible Carnot heat
engine was analysed using the power density
objective with considerations of the heat transfer
irreversibility in the hot and cold side heat
exchangers and the effects of finite thermal
capacitance rates.

2. System Description and Analysis

A Heat engine working between two thermal
reservoirs of finite heat capacitance is shown in
Figure 1. The processes 1-2’ and 3’-4 are
reversible adiabatic, and processes 2'-3’and 4-
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Figure 1 Schematic diagram of a Carnot
heat engine

1 are isothermal. Assuming that the heat
exchangers are counterflow, the heat
conductance (product of heat transfer surface area
and heat transfer coefficient) of the hot and cold
side heat exchangers are Uy, and U,. The thermal
capacity rate (product of mass flow rate and
specific heat) of the hot side heat: reservoir is
C,,, and the inlet and outlet temperature of the
heating fluid are T, and Tj,,, respectively. The

thermal capacity rate of the cold side heat

reservoir is C,, and the inlet and outlet
temperatures of the cooling fluid are T , and T,,
respectively. Temperatures of hot and cold side
working fluid of the heat engine are T, and T
respectively. The T-S diagram of the heat engine

—

is shown in Figure 2.

The rate of heat flow (Qy,) from high temperature
heat source to the system is given by:

Oy =CH(Tm‘Tﬁz)=5HCH(TH|‘TW) (1)
Similarly, the rate of heat flow (Q) from system
to the low temperature heat sink is

QL=CL(TL|_TL1)=5LCL(TC‘TL1) (2)

; R
where e, and e, are, respectively, the
effectiveness of the hot and cold side heat
exchangers, defined as:

3)
@

The number of heat transfer units, N, and N,
are based on the minimum thermal capacitance
rates, that is:

&y .=1‘°xP [‘NH]

8-1.=1‘CXP[‘NL]

N,_:Qa-’*-

& 6

The power produced (W) by the engine
according to the first law is:

Heat engine cycle 7

Tc

N

Figure 2 T-S diagram of an igreversible heat
engine cycle
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W=0, -9,

4 =5HCH[TM| =Ty ]‘ ELCL[T(‘ ‘Tu] (6)

The power density (W) defined as the ratio of
power produced to the maximum volume in the
cycle then takes the form;

EHC.II [THI Ty ]‘ eLCL[TL' ‘Tu]

W, =
4 v

(7)

4

The second law for an irreversible cycle requires
that:

d :
§ =92 ®

One can rewrite the inequality in Eq.(8) as

Y Y
T—”-R'T—L=0 with 0 < R < 1 9)

W c
where the internal irreversibility parameter R is
defined as

Sa‘Sz
S, -8,

(10)

By substitutihg equations (1) and 2) in Eq. (9),
we have

EHCH[TIII_TW]=R8LCL[TC—TLl] 1
T, T, (11)

Assuming an ideal gas, the maximum volume in
the cycle V, can be written as

_ mR. T,
P min

v, (12)

where is the mass of the working fluid and R
is the ideal gas constant. In the analysis, the

minimum pressure ( Pmin) in the cycle is taken

to be constant[9].  The power density then
becomes

W, =[%I£HCH[TH| _TW}'—gLCL[TC ‘Tu]] (13)
g c

One can maximize the power density given in
Eq.(13) with respect to Ty and T. by using
Eq.(11). The results are;

-

exCyTyRe,C 1+ R%,°C, 0T, +
Ty Cy R47°T,6,CRe,C +
| 'JSHZCHZTHIZRz(Ralcl. +64Cy Jr'(C 6, +5,Cy)
&4 Cy R+ £,CuR,C, +
264CyRe,Cr 7+ R, ’C . 14 16,°C,°

(14)

Ic

ey Cy T R6,C 7+ R, ’C}e°T, +
T84 °Cy* R+ 7T, 16,C, R6,C, +
‘/EHzC”szz RI[RELCL +}_z["CL5L "‘J
. 4 Cy &4yCy

Ty = &yCylyy—= =

€n’Co Ty R6,Cyv + £,°C, T, R+

Re,C, +) ,(1C,¢, +
EHC,,\/&‘,,ZC,,ZT,,,ZRI( &l },z( 161 J_,_

&4Cy £4Cy
Re,C, +) ,(1C e, +
Re.C 20 3 1paf RELL ) o[ T06;
- & L\/sll wim &,C, T &,C, ]
(15)

Substituting Eqs. (14) and (15) into Eq(13), the
maximum power density (MPD) can be found
as

_— [ Pun ][EHCH I -Tw']-'SLCL I -1, ]}

d max

’nRE TC
(16)
_ The thermal efficiency of heat engine is given
as:
0,
n=1--= (17)
0,

Using Eqs. (14) and (15) into Eq(17), the
efficiency at MPD (Cmpa) becomes :

N

T. :
=]- C
mpd v (18)
R. TW
CuTyR’Coepe,7+CLelT, R -

n =l \/£:C:T15|R2(R€LCL + 3HCH)72('CL€L + 8I{CI{)

il (TH,C,,s,,R(zRCLe‘L +6,CyR+£,C,7))
'y

(19)
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where 7 = is the cycle heat reservoir inlet

Hl
temperature ratio.
Similarly, one can maximize the power output
given in Eq.(6) with respect to T, and T using
the condition given in Eq(11). The results are:

£4CyRE,Cy Ty, + R26,’C, 01Ty, +
\/TngHzCHZR(RgLCL +&,Cy )2 T

[(\/T,,,za,,zc,,zk(RaLCL +¢&,C, )zr)]

(RgLCL + gilcﬂ)

Twmp =8HCHTHI

(20)

£,CyRe,C T, + R2e,°C 4T, +
VTie,’C R(Rs,C, +6,C, '
(6,Cy+Re,C,)

T =

cmp

(21)

Substituting Eqs(20) and (21) into Eq(6), the
maximum power can be found as

W =E4CylTy, -

max

Twmp ]‘_ ELCL [Tanp - TLI] (22)

The thermal efficiency at maximum power ()
is:
CyTyR’C 46, +Cy' Ty Re,,” -
I 26, °C. P R(Re,C, +£,C, P
e ™ (THICHEHR(RELCL +£HCH))
(23)

3. Results and Discussion

In order to have a numerical appreciation of the
results of maximum power density , detailed
numerical analysis are provided and are
compared with those for the maximum power
objective. During the variation of any one
parameter, all other parameters are assumed to
be constant as given below:

1=0.2, C, =G = 1kW/K, g,=¢ =09
and R=0.8.

Variations of the two efficiencies M,,andn_)
with 1 are shown in Figure 3. The following
comments can be summarized from the
observations of this figure: (i) For the chosen’
values of the parameters, the thermal efficiency
at MPD(n, ) is always greater than the thermal
efficiency at MP conditions (n,); (ii)The thermal
efficiency advantage of the MPD conditions with
respect to MP conditions (An= 7, - Ninp?
decreases with the increase in © (cycle heat
reservoir inlet temperature ratlo)
Example for © =0.2, n = 0.5 and Tnpa
0.574, and fort =0.6, 0, = O134andn mpd =
0.139. The followmg observations can also be
seen by evaluating Egs. (19) and (23); (iii) Both
the thermal efficiencies decreases with an
increase in T and becomes zero when t = R.

Variations of the dimensionless power at MPD
conditions ( P, . = W, /ip,./mRJe,C,) and
dlmenSIonIess power at MP condltlons
(P =W_ /e C.T,) with T are shown in Figure
4, As can be seen from the figure, P__ is always
lower than P,__, that is if the design parameters
are selected at MPD conditions instead of MP
conditions, the thermal efficiency increases as
much as by An= n_ o~ Ny and the power
increases by AP= P, _-P__.On the other hand,
as 1 increases, m_ dand n Pinex @nd P_
decreases and get closer to each other and they
become zero when 1 = R. In order to obtain-
positive performance in terms of thermal
efficiency and power for both the MPD and MP
conditions, it is necessary that T should be less
than R.

Variations of the two efficiencies (n_ o’ and Ninpd
with R are shown in Figure 5. From this flgure
one can observe the effects of internal
irreversibility on the global and optimal
performances. As the internal irreversibility
increases, that is , as R decreases, the global and
optimal performances gradually decrease and the
value of the efficiencies, n_ mpandn, . getvery
close to each other. It can also be noted that the
reducing effect of the internal irreversibility on
Tmpa 1S greater in comparison to Neop * Thus, it is
important to take precautions to reduce internal
irreversibility in the design of a heat engine
working at MPD conditions with respect to the
one working at MP conditions.
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Figure 3. Variations of efficiencies of maximum power and maximum power

density conditions with tfor R = 0.8
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Figure 4. Variations of dimensionless maximum power density and dimensionless

maximum power with zfor R = 0.8
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Figure 5. Variations of efficiencies of maximum power and
maximum power conditions wi

.

th R for various values of 7.

The expressions for the efficiency, at maximum
power condition and at maximum power density
conditions, in terms of heat capacitance ratio can
also be written as:

[¢R’a,,eLr+s,’,¢’R’ -

Jeio®R(Re, + P m)} (24)
(¢£HR(1R8L +¢5nR+¢5n7))

[¢R’s,,e,_ +el¢’R- Js,’,:ﬁ’R(RsL + e,,¢)zr]

(¢£HR(R5L+¢5M))

n mpd

qmp =

(25)
where ®=C/C, is the heat capacitance ratio.

The variation of efficiencies with heat capacitance
ratios(®) is shown in Figure 6.

It can be seen from the figure that as the value
of @ increases, My, increases. It is noticeable
that the rate of increase in 1, 1S more till the
value of @ < 0.4 and there after the rate of
increment slows down and becomes almost
constant when becomes 2 1. For example 0,
0,578, when ® = 0.1, 7= 0.2 ¢ Tl = 0635,

when ®=09,71=02 andn_, = 0.64 when @
=14 and t=0.1. 1t can also i)e observed that

= remains constant with the value of @. In
order to obtain positive performance output for
both maximum power density and maximum
power conditions, the value of ® should
approximately be unity. Such case can be seen
__by evaluating equations (24) & (25).

The size of a heat engine can be characterized
by the maximum volume in the cycle, ie. Vv, -
For turbo machinery, Sahin et al{12] discussed
that the maximum volume in the cycle
characterizes the engine size.

The ratio of the maximum volume at MPD to
the one at MP can be written as:-

5,CyRi6,Cur+ REICHT }
+eelCiR+7 e, CyRECLH

JE},C},R’ (Re,C.+ EIICH)TI(‘ICI.“:L + 8,,C,,)
(EH’C,,’R +8,CyR*e,C, +26,CaReCT ¥

2. 2,2 2 2
R*e, C r+18y Cy

(lex).pd - l_ C 3
(Vm)., [e,,C,,Rs,_CLr +R%C T+ ] i (26)
\jeuzcan(ReLcL +£4Cy Yr

(8ucu + REI.CL)I
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Figure 6. Variations of efficiencies of maximum power and maximum power
densgity conditonsw ith heat capacitance ratb for varbusvaliesof 1.
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Figure 7. Variations of volume ratio with  for different values of R.
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Variations of (V) ./ (V) are plotted with respect to T in Figure 7. As can be seen, the ratio
of maximum volumes in the cycle is always less than unity. As a result, at MPD conditions engine
sizes will always be smaller than the one operating at MP. Moreover as the internal irreversibility
increases, that is, as R decreases, the engine size advantage of the MPD conditions decreases.

4. Conclusions

The performance of an irreversible Carnot Heat engine cycle coupled to variable temperature heat
reservoirs with heat transfer irreversibility in the hot and cold side heat exchangers was analyzed
by taking the power density as the optimization objective.

Comparisons between maximum power density conditions and maximum power conditions were
made. The effects of the cycle irreversibility parameter on the efficiency and power output at MP
and MPD conditions are studied by detailed numerical examples. The analysis showed that the
thermal efficiency at MPD conditions is greater than the one at MP conditions. However, the thermal
efficiency advantage of the MPD conditions with respect to MP condition decreases as the internal
irreversibility increases. The results indicate that the reducing effect of the internal irreversibility on
the thermal efficiency at MPD conditions is greater in comparison to the one working at MP
conditions, Further more, it is shown that engine sizes designed at MPD conditions would be
smaller than those operating at MP conditions. The results presented in this analysis generalize the
results of the previous studies and may provide guidelines for determination of the optimal design
and operating conditions of real heat engines.
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