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 ABSTRACT
With the breakthrough of Independent Component Analysis (ICA) algorithm, it is possible now to even analyze 
the measured electromagnetic brain signals. Analysis with a conventional Independent Component Analysis 
(ICA) algorithm has previously demonstrated the results but the square mixing matrix assumption of 
conventional ICA causes large number of sources to be estimated. The modern ICA algorithm addresses this 
problem by extracting the signal sources which is closest in same sense, to a supplied reference signal. In this 
paper, we propose a method for delay estimation in separating speech of individual speakers from a multi-
speaker speech signal using the knowledge of excitation source information. We examined and demonstrated 
our approach with two-microphone system for two and three dimensional signals. Through this paper, we 
present a technique for separating the audio sources from a single mixture. The system is based on the 
extraction of independent basis function from the mixture spectrogram and grouping them to produce the 
source subspaces. Principal component analysis is used for dimension reduction and independent component 
analysis is employed to make the basis functions independent from each other.  The proposed algorithm is 
suitable for better grouping of the basis functions to separate the individual source. The satisfactory result of 
two-source mixture separation motivates to use our technique for real world single mixture source separation.

Keywords-Independent component Analysis, delay estimation, analysis of signals, multi-speaker speech 
signal, novel approach

not unusual to hear of a causal relationship 
between a latent variable and a set of given 
observable variables (e.g., “it is because of a 
person's high level of intelligence that he or she 
does so well on standardized tests”). Latent 
variables are also known, for example, as hidden 
variables in neural network modeling and as 
sources that are statistically independent of each 
other in independent component analysis. 
Latent variables have been introduced into 
MCMC sampling as auxiliary variables and as a 
data-augmentation technique in missing-value 
problems. Latent variables are usually formed as 
linear combinations of observable variables for 
the purpose of reducing the dimensionality of a 
data set. Indeed, it is easier to consider a single 
latent variable interpreted as “quantitative 
ability” than to have to deal with understanding 
a battery of different arithmetic and 
mathematics test scores. As we will see, latent 
variables play the fundamental role of “sources” 
in blind source separation problems.

1.INTRODUCTION

Models incorporating “latent” variables have 
been commonplace in the social and behavioral 
sciences for a long time. The most popular of 
those models is the factor analysis model, in 
which a set of observed continuous variables is 
explained in terms of a much smaller set of 
continuous latent variables (called factors), and 
the relationship is taken to be a linear one. Latent 
variables, which can be continuous or discrete, 
are quite different from observed variables in 
that they are artificial or hypothetical constructs.

Latent variables are typically used to give a 
formal representation of ideas or concepts that 
cannot be well-defined or measured directly. In 
educational and psychometric research, for 
example, fuzzy concepts such as “general 
intelligence,” “verbal ability,” “ambition,” 
“socioeconomic status,” “quality of life,” and 
“happiness” is constructed from certain 
observed variables that are regarded as proxies 
for those unobservable concepts. Moreover, it is 
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2. BLIND SOURCE SEPARATION 

Used in sound and image processing, brain 
imaging, remote sensing, signal processing, 
stuck-market movement. An example of Blind 
source separation is cocktail party problem 'm' 
persons are speaking in a party simultaneously 
'r' microphones placed at different distances in 
the same room and record a different mixture of 
speakers voice at different time points. 

The problem is to separate out speech signals of 
each of each of 'm' speakers based upon these 
microphone recordings. Thus the problem is 
immixing the mixture of signals. Special cases 
of this model include independent component 
analysis.

3 .  I N D E P E N D E N T C O M P O N E N T 
ANALYSIS (ICA)                

Independent component analysis (ICA) is a 
multivariate statistical technique that seeks to 
uncover hidden variables in high-dimensional 
data. As such, it belongs to the class of latent 
variable models. Furthermore, because of its 
success in analyzing signal processing data, ICA 
is also regarded as a digital signal transform 
method. In its most basic form, the ICA model is 
assumed to be a linear mixture of an unknown 
number of unknown hidden source variables, 
where the mixing coefficients are also unknown. 
A totally “blind” approach to determining both 
the hidden variables and the mixing coefficients 
solely from the observed multivariate data fails 
because the problem as stated is not well-
defined.

To build more structure into the problem, we 
require the hidden variables to be mutually 
independent and also (with at most one 
exception) non-Gaussian. ICA is actually an 
amalgam of several related approaches to this 
problem, and these approaches are characterized 
by the types of assumptions visited upon the 
distributions of the independent source 
variables and whether or not a separate noise 
component should be included in   the  ICA 
model.

3.1  ICA Model

Linear mixture of unknown number of unknown 
variables, where mixing coefficients are also 
unknown, hidden variables are assumed to be 
non Gaussian and independent. ICA has vast no. 
of applications. We come across many medical 
applications like EEG, etc. in our life. It has 
made the estimation of signals particularly in 
medical diagnosis very efficient. 

3.1 General   ICA problem

In general form we assume that X̃ is generated 
by

X̃=g(s̃)+ẽ

Where S̃ = S1     :   mX1 vector of unobservable 
source 

           .                    component  (latent source 
variables) 

           . 

           Sm

X̃ =     X1                 :rX1 vector of observation

            .

            .

           Xr

g: mixing function

ẽ =       e1

             .                 = error

             .

34

                 APPLICATIONS

EEG Relate certain type of behavior of changes in 
electrical action / activity of cerebral cortex.

ERP Fine tuned EEG, resulting from simulation 
of visual, auditory or sensory systems.

MEG Strength of magnetic field generated by
cortical activity

FMRI (Functional Magnetic Resonance) used to 
study human brain, web image, retrieval & 
classification, remote sensing, classification
of micro array, gene profile.

Table 1. ICA general and medical applications 
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            er

g : RmRr

BSS problem is to invert g & find s̃

Sj = jth latent variable :ammeel to have mean 
'zero' & variance '1'

If  g(s̃) =As̃ where 'A' in a r X m matrix of mixing 
parameter then model is linear ICA model.

If g(s̃) is non-linear we have non-linear ICA 
model.

* (mixing function is unchanged with time)

If 'e' is not included then all noise is associated 
with s and model is called noiseless ICA if 'e' is 
included, then model is called “noisy ICA”.

Let us consider ICA with linear structure 

        X̃ = As̃

We assumed that s is non-Gaussion and has 
independent components. For Gaussian case, it 
is not possible to estimate A & S̃ separately.

    Xi =     Xi1

                 .              i = 1,2,….n : dataset

                 .

                Xir

our is to recover 'm' independent sources.

    Si =     Si1

                 .            ; i = 1,2,…. n

                Sim

(linearly independent)

and    X̃i = Asi

          A = rXm

usually msr & rank of A=m

If 's' has mean 'o' and covariance matrix 
'Im'.Then X̃ has mean vector 'o' &covariance 
matrix AA'

premultiplying both side of               

           X̃ = AS̃

By   (A ́A)A     we obtain

        (A ́A)A ́X̃    =  AS̃(A ́A)A ́

                         =   S̃

       or     S̃ = WX̃

where

    w = (A ́A)A ́:unmixing/separating matrix

Note: if  A is square matrix = (A ́́A)A ́

                                            =A(A ́)A ́

                                            =A

Then

              Sk  = WkX̃  (k=1,2…….,m)

             W ́k is kth row of W

If  ̂ w is an estimate of  'w' then we can estimate  
s by

             S=wx

4. The FAST ICA Algorithm

1) Centre & whiten the data.

2) choose an initial vector 'w' with unit norm

(|| w|| = ( w̃ ẃ ̃)  =1)

w̃ may be chosen randomly

3) Choose G to be any non-quadratic density 
with first

& second partial derivatives 'g'& 'g''

(some choices are log cosh & exp)

Table 2. the log cosh and exponential values of 
G(y), g(y), and g ́(y)

4) (Modify the weight in average form)

 5)    w    =  ||w||

 6) Return to steps 4&5 until convergence is 
achieved

FAST ICA package uses two different ways for 
extracting components.

4.1 Deflation

The single component routine finds a new 
componen t  t ha t  new componen t  i s  
orthogonalized with respect to all previously 
found compounds and then resulting component 
is normalized.
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4.2 Parallel

The single component routine is carried out in 
parallel for each independent component to be 
e x t r a c t e d  a n d  t h e n  a  s y m m e t r i c  
orthogonalization is carried out and all 
components simultaneously.

4.3Deflation Algorithm

1) Centre & whiten data to give X

2) Decide a no. of components 'm' to be 
extracted.          

3) For K=1,2,…..,m

-initialize r-vector(r*1) wk with ||wk||=1

- let 

wk

(FAST ICA single compound update)

-   let   wk

-  iterate wk until convergence achieved

  4)   Set K    K+1 if ksm returns to step  3

4.4  Parallel algorithm

1)   Centre & whiten data to give X

 2)   decide ( no. of component) 'm'.

3)   Initialize r vector w1,w2,…..wm each ||wk|| 
= 1

4)  Carry out symmetric orthogonalization .

5)   For K=1,….m

      (weights update)

6)   Carry out symmetric orthogonalization for 

 'w'.

7) Return to step 5 until convergence is 
achieved.

5.   EXPERIMENT 

For finding out the quality of recovery of signal, 
we performed various experiments which are 
based on three parameters which are:

(1) Number of signal

(2) Number of method

(3) Number of dimensionality  

 Now we will take these three parameters to 

check which signals recovery is best and whose 
recovery is worst.

5.1  TWO DIMENSIONAL SIGNAL 

First we generated signals of two dimensional in 
which we have selected height and width 
randomly. In two dimensional we use images to 
watch the figure.

The original signal which we ran on FASTICA, 
following things got separated 

(a) original signal

(b) Mix signal 

(c) Recovering signal    

    Now we have to find out quality of recovery of 
signal which is based on three parameters which 
are:

(1) Number of signal

(2) Number of method

(3) Number of dimensionality  

 Now we will take these three parameters to 
check which signals recovery is best and whose 
recovery is worst. 

Suppose: we took number of signal two. To 
check it we took six numbers of methods.  In that 
we find out same get very good recovery and 
some get bad recovery.  After six numbers of 
methods we find out Q (sum of square root of 
original signal and recovery signal) of all the 
methods separately.

(1) Then we find out mean individually

(2) Then finally the mean of all the means is 

 calculated. 

Similarly with the method written below, we 
check it till the five signals. Then we find out that 
as we are increasing the number of signals, the 
mean of Q is also increasing and the standard 
derivation is decreasing.

36Journal of Multi Disciplinary Engineering Technologies Volume 8 No.1 Jan.-June 2014



5.1.1 OUTPUT OF TWO SIGNALS 5.1.2 OUTPUT OF THREE SIGNALS

5.1.3 OUTPUT OF FOUR SIGNALS
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Fig1. Matlab experimentation view of output of three signals of 2-D signal

Fig2. 
Matlab experimentation view of output of two signals of 2-D signal

Fig3. 
Matlab experimentation view of output of four signals of 2-D signal

Table 3. The statistical data obtained from output of two 
signals in 2-D signals

S. 
No. 

Original 
Signal 

Recovery  
Signal 

Value  Individual  
Mean 

Std. 

1. 1 
2 
3 
4 

2 (-) 
1 (-) 
3 (+) 
4 (-) 

0.0955 
0.0123 
0.2032 
0.1884 

 
Q=0.1259               

 
0.885 

2. 1 
2 
3 
4 

2 (+) 
1 (+) 
4 (+) 
3 (+) 

0.0666 
0.0333 
0.1393 
0.0317 

 
Q=0.0677               

 
0.0504 

3. 1 
2 
3 
4 

1 (-) 
2 (-) 
3 (-) 
4 (-) 

0.0135 
0.1353 
0.2261 
0.0615 

 

Q=0.0787               
 
0.0927 

4. 1 
2 
3 
4 

1 (-) 
4 (-) 
2 (-) 
3 (-) 

0.0743 
0.1964 
0.1819 
0.1115  

 

Q=0.1410               
 
0.0579 

Table 5. The statistical data obtained from output of four signals
in 2-D signals



5.2    THREE DIMENSIONAL SIGNAL 

Three dimensional is similar to the two 
dimensional. But in this till two dimension 
features are clear but as we increase the number 
of dimensionality are not clear. Therefore, we 
convert three dimensional into two dimensional.  
We use slice to watch the figure but as we 
increase the number of signals so features are 
not clear.

5.2.1 OUTPUT FOR TWO SIGNALS

Then increase the number of signal features are 
not clear. Therefore we convert three 
dimensional into two, dimensional. To do this 
we take projection.

5.2.2 OUTPUT FOR TWO SIGNALS 
PROJECTION

5.2.3 OUPUT OF THREE SIGNALS
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Fig 4. 
Matlab experimentation view of output of two signals of 3-D signal

Fig5. 
Matlab experimentation view of output of  two signals of 3-D signal

Table 6. 
The statistical data obtained from output of two signals in 3-D signals

Fig6. 
Matlab experimentation view of output of three signals of 3-D signal

Table 7. The statistical data obtained from output of three 
signals in 3-D signals
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5.2.4 OUTPUT FOR FOUR SIGNALS – 
PROJECTION

6. RESULT COMPARISON:

From our experimentation of fast ILA over two 
microphone system for determining the delay 
estimation of multiple signals in 2-D and 3-D, 
we infer that the following result proofs our 
project and tell us that our process can be set as 
an example for further growth in ICA related 
estimations. The result of all the statistical data 
obtained from our experimentation of 2-D and 
3-D signals in given in table 9.

7. CONCLUSION

Independent component analysis (ICA) is a 
multivariate statistical technique that seeks to 
uncover hidden variables in high-dimensional 
data. As shown in the project that we have used 
Fast ICA technique for signal separation which 
is of two types deflection and parallel. Further in 
Fast ICA, we have used deflection technique. 

Signals which is being used here is Gaussian 
signal. As we know that in non-Gaussian 
signals, there is a perfect overlapping of signals 
which makes its separation difficult. Therefore 
Gaussian signal is used for signal separation. 

Thus ICA is used to reduce the dimension of 
signal. It is a very useful technique for signal 
separation which makes it extremely useful in 
medical field.
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