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Abstract
In this article, we will treat a generalization of the Lagrange problem of the calculus of vari-
ation by adding higher-order derivatives in the functional. We convert this to a mathematical
programming problem and derive the KKT necessary conditions. The final result will be a
generalization of Euler-Lagrange equations.
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1 Introduction and Prelims

Mathematical programming[1] is concerned with the optimization of the function over some vector
space. Mathematical programming problems often deal with constraints. On the other hand, vari-
ational problems are associated with the optimization of a functional. Classically these problems
have no constraints. Mathematical programming and variational problems have different origins in
history. A variational problem can be traced back to Newton and Bernoulli. Thus it is older than
the modern optimization itself. Since both the fields have grown independently, each field can get
advantage from the other field. In this article, we will handle a variational problem as a mathemati-
cal programming problem. This article also serves as an example of analyzing a variational problem
as a mathematical programming problem.

The general optimization problem in which, the variables are continuous, can be written as
follows

min  f(z) (1)
subject to gi(x) >0
hz(ﬂf) =0
z € R¥
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Here x € R¥, and f, g;, h; : R¥ — R are scaler functions. This general optimization problem 1 can be

classified based on the properties of the functions f, g;, h; and the domain of the decision variable x.
In order to further generalize this optimization problem we can write g; as vector function

g=1(91,---,9m) and h = (hy,..., h,), Now the above problem can be represented as

min F(x) subject to —g(x) € R (2)
xER

h(x) = 0.
Here R = {x = (21,...,%,) € R™ | 2; > 0} is called the non-negative orthant of R,,[2].

In mathematical programming the decision variable can be a function, hence it generalizes the
notion of optimization in which the decision variable are elements of real numbers. In variational
problems the decision variable are itself functions. The space of continuous functions form a vector
space, hence this problem lies under the mathematical programming problems. The constraints are
inequality involving scalar functions of function. If we have a system of the constraints g;(z) <
0,1 < i < m, it means that

gi(z)(t) <0, t€a,] (3)
If S is the set of all continuous functions, ¢ : [a,b] C R — R™, such that,

o(t) e RY, t€a,b]
Then the constraints 3 in the vector form can be written as —g(x) € S. This set S is a convex cone.

Now we will replace the decision variable x with the elements of arbitrary vector space z € V,
then the general problem of mathematical programming will be like

Izléi‘l/l F(z) (4)
subject to —g(z) €S (5)
h(z) =0

Where F is a scaler function, g : V — R™ and S is a convex cone. Hence a mathematical
programming problem often represents a large class of optimization problems compared to 1.

2 Variational Problem

Mond and Hanson [3] discussed the duality for a modified Lagrange problem. In this problem, the
functional dependents on the first-order derivative. Husain and Jabeen [4] generalized this problem
by adding a second-order derivative in the functional. Here we will consider the problem in which
the objective functional will depends on the derivatives of arbitrary order. Variational problems in
higher-order are a special case of the variational problem involving vector function[5, Section 7.4].

In this section we will discuss a generalization of Lagrange problem including arbitrary order
derivatives as follows

min /ftxm 2P)dx

subject to (a) = As,z'(b) =By, i=1,...,p—1 (6)
Q(t,a:,x,...,x )ZO

Here,
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1. I =la,b] CR

2. f i IxR"x---xR"((p+1)—times) — R belongs to the set of continuously differentiable function.

3. X is the space of all piecewise smooth function, x : I — R”™ having derivative up to order p. In
order to make this function continuous we use the following norm

[|z]] = [[z[lec + [[D2lloc + - - + [[DP2||oo-

Here D is the differentiation operator given by
y=Dr & a+ /y(s)ds,
I

d . o L
hence, D = . except at the discontinuities, where « is given boundary values.
x

4. Q: I xR x--- xR*((p+ 1) — times) — R™ is also a continuously differentiable function.

The main idea to represent the problem as a mathematical programming problem, more partic-
ularly a convex optimization problem. Convex optimization [6] is currently the most important
generalization of optimization problem for practical purposes. Now the KKT necessary conditions
for this problem will be derived as the following theorem [7].

Theorem 1 (KKT Conditions). Let Z is any optimal solution and solvable for the problem 6, then
there exit Lagrange multiplier X : I — R™ is a piecewise smooth and it satisfies the following set of
equations

fet, 2,2, ..., 27) = AXO) T Qu(t, 2,7, ..., ZP)
D (fw(t,z,2,...,2°) = Mt)"Qu (t, 2,2, ...,2"))
— D (for(t,2,2,...,2°) = Mt)" Qo (t, 2,7, ...,27)) (7)

Proof. This variational problem can be written as a mathematical programming problem 4 as follows

Il’éi)l(l F(x) subject to G(x) € S 9)

Here, the objective function is

F(x):/f(t,a:,x’,...,zp)d:c,
I
the set

S={¢:I—R™|¢(t) € R},

forms a convex cone and the constraints is given by

G:X — S, where G(z)(t) =g(t,z,2’,... aP).
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Since F' and G are Fréchet differentiable, the KKT conditions for the problem 9 [2, Section 3.5]
says that, for any optimal solution X of it, we get u € S*,i.e., dual of S, such that,

F'(x)—u'G'(%)=0 (10)
uTG(%) =0 (11)
pn>0 (12)

where F'(X) and G'(X) represent Fréchet derivatives.
Now for z,v € X, we have

fet,z, 2’y o aP)o(t) + for(tx, 2’y o 2P)0' (1)

dt+0 13
ot far (b2, 2P)OP(E) vl (13)

FE+v)— F(%) :/I

F(X+v)— F(X) :/I (14)

+oot for (b, 2P )P ()

otz o xP)o(t) + for(t,z 2!y xp)v’(t)] "

Now any g in the dual space of S,there is a measurable function A : I — R™ [2, Section 2], such that,

(u,v) = /I)\(t)Tv(a:)dt, Yv e X (15)

Also for v € X, we have

pTG(R)v = /IA(t)T (16)

gu(t, s o 2P () + g (t,x,2! . 2P ) (8) a
+o g (b, 2P )P (L)

Now using equations 14 and 16 in the first KKT equation 10, we get for all v € X after suppressing
the arguments of all functions, we have
0= F/(%) - W' G(x)

= /[fxv + fort + -+ fopvP]dt — //\T[ng + gort) + -+ + gurvPldt
I I

- /(f»L - )\Tgx)vdt + /(fz’ - ATgx/)U/dt + -+ /(fJ;P - /\Tgl.p)vpdt
1

I I

using integration by parts, we get

=/m—ﬂmww

I
t=b

T / [D(for — ATg,0)] vt

t=b

+ [(fw” - /\Tgwp)vp_l}t:a / [D(pr — )\Tgaﬂ’)] @D gt
I
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as vi(a) = v(b) =0, 0<i<p-—1, we get

= /I [(fz - )\Tgw) = D(fur — )\ng’)] vdt
- x [D(fx// - )\ng//)] U/dt
- /1 [D(far — AT )] 0PVt

again integrating by parts, we get

= / [(fz - )\Tgac) - D(fz’ - )\Tgm')] vdt

1

- [(fz” - )\ngu)v]ZiZ +/I [DQ(fx” - )\Tgm”)] vdt

t=b

B |:(pr - )\Tng)v(p_2):| +/ [DQ(fa:P - )\Tgmp)] U(p_Q)dt
a I

t=

0, 0<i<(p-—2), we get

= /I [(fw - )\Tgw) = D(fur — )\ng') + DQ(f:r” - )\Tgm”)] vdt
+/ [D2(fmw - )\Tgmm)] v'dt

I

+/ [D2(for — AT garn)] v@~ 2t
I
procceding in the same way untill we exhaust the derivatives of v, we get

N ~/I [(fw - )‘Tg:c) - D(f:c' - )\ng’> et <_1)pr(sz - )\Tgwp)] vdt

Now, using the result of Valentine [8, Lemma 2|[5, Lemma 7.3].
(fe — )\Tgw)
=D(for — /\Tgx’) — D*(for — )‘Tgx”) o (CD)PTIDP(for — ATgxP)a tel (17)

The final equation we got is a linear differential equation of order p in A(.), therefore, it is solvable
for piecewise continuous function A(.) and z. Using the result of valentine on equations 11 and 12,
we will easily get other two conditions. This completes the proof of this theorem. O

13



3 Conclusions

Thus we have derived the necessary conditions for the variational problem 6 using the results of
mathematical programming. We can also see that in the case of unconstrained optimization, we are
left with the Euler-Lagrange equation [5].
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